A Sialic Acid Binding Site in a Human Picornavirus


Coxsackievirus A24 variant (CVA24v) and enterovirus 70 (EV70) are responsible for several outbreaks of a highly contagious eye disease called acute hemorrhagic conjunctivitis (AHC). These viruses represent a limited set of human picornaviruses that use glycan receptors for cell attachment. Until now no data has been available about the binding site of these glycan receptors. We therefore determined the structure of the entire virus capsid in its unbound state and also together with several glycan receptor mimics and could establish the structure of the receptor binding site. CVA24v recognizes the receptor at a solvent exposed site on the virus shell by interactions with a single capsid protein VP1. Moreover, we identified a glycan motif favoured for CVA24v binding and confirmed this preference biochemically and by in silico simulations. Our results form a solid basis for structure-based development of drugs to treat CVA24v-caused AHC.


Vyšlo v časopise: A Sialic Acid Binding Site in a Human Picornavirus. PLoS Pathog 10(10): e32767. doi:10.1371/journal.ppat.1004401
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.ppat.1004401

Souhrn

Coxsackievirus A24 variant (CVA24v) and enterovirus 70 (EV70) are responsible for several outbreaks of a highly contagious eye disease called acute hemorrhagic conjunctivitis (AHC). These viruses represent a limited set of human picornaviruses that use glycan receptors for cell attachment. Until now no data has been available about the binding site of these glycan receptors. We therefore determined the structure of the entire virus capsid in its unbound state and also together with several glycan receptor mimics and could establish the structure of the receptor binding site. CVA24v recognizes the receptor at a solvent exposed site on the virus shell by interactions with a single capsid protein VP1. Moreover, we identified a glycan motif favoured for CVA24v binding and confirmed this preference biochemically and by in silico simulations. Our results form a solid basis for structure-based development of drugs to treat CVA24v-caused AHC.


Zdroje

1. NilssonEC, JamshidiF, JohanssonSM, ObersteMS, ArnbergN (2008) Sialic acid is a cellular receptor for coxsackievirus A24 variant, an emerging virus with pandemic potential. J Virol 82: 3061–3068.

2. WrightPW, StraussGH, LangfordMP (1992) Acute hemorrhagic conjunctivitis. Am Fam Physician 45: 173–178.

3. Aubry C, Gautret P, Nougairede A, Dussouil AS, Botelho-Nevers E, et al.. (2012) 2012 outbreak of acute haemorrhagic conjunctivitis in Indian Ocean Islands: identification of Coxsackievirus A24 in a returned traveller. Euro Surveill 17: : pii = 20185.

4. CabrerizoM, EchevarriaJE, OteroA, LucasP, TralleroG (2008) Molecular characterization of a coxsackievirus A24 variant that caused an outbreak of acute haemorrhagic conjunctivitis in Spain, 2004. J Clin Virol 43: 323–327.

5. GhazaliO, ChuaKB, NgKP, HooiPS, PallanschMA, et al. (2003) An outbreak of acute haemorrhagic conjunctivitis in Melaka, Malaysia. Singapore Med J 44: 511–516.

6. KuoPC, LinJY, ChenLC, FangYT, ChengYC, et al. (2010) Molecular and immunocytochemical identification of coxsackievirus A-24 variant from the acute haemorrhagic conjunctivitis outbreak in Taiwan in 2007. Eye (Lond) 24: 131–136.

7. LikarM, Talanyi-PfeiferL, MarinJ (1975) An outbreak of acute hemorrhagic conjunctivitis in Yugoslavia in 1973. Pathol Microbiol (Basel) 42: 29–35.

8. MouraFE, RibeiroDC, GurgelN, da Silva MendesAC, TavaresFN, et al. (2006) Acute haemorrhagic conjunctivitis outbreak in the city of Fortaleza, northeast Brazil. Br J Ophthalmol 90: 1091–1093.

9. TrikiH, RezigD, BahriO, Ben AyedN, Ben YahiaA, et al. (2007) Molecular characterisation of a coxsackievirus A24 that caused an outbreak of acute haemorrhagic conjunctivitis, Tunisia 2003. Clin Microbiol Infect 13: 176–182.

10. BaidyaBK, BasuRN, ChakrabortyAK (1983) Recent epidemic of acute haemorrhagic conjunctivitis in Calcutta. Indian J Ophthalmol 31: 632–634.

11. PlevkaP, HafensteinS, HarrisKG, CifuenteJO, ZhangY, et al. (2010) Interaction of decay-accelerating factor with echovirus 7. J Virol 84: 12665–12674.

12. YoderJD, CifuenteJO, PanJ, BergelsonJM, HafensteinS (2012) The crystal structure of a coxsackievirus B3-RD variant and a refined 9-angstrom cryo-electron microscopy reconstruction of the virus complexed with decay-accelerating factor (DAF) provide a new footprint of DAF on the virus surface. J Virol 86: 12571–12581.

13. XiaoC, Bator-KellyCM, RiederE, ChipmanPR, CraigA, et al. (2005) The crystal structure of coxsackievirus A21 and its interaction with ICAM-1. Structure 13: 1019–1033.

14. VerdaguerN, FitaI, ReithmayerM, MoserR, BlaasD (2004) X-ray structure of a minor group human rhinovirus bound to a fragment of its cellular receptor protein. Nat Struct Mol Biol 11: 429–434.

15. HeY, ChipmanPR, HowittJ, BatorCM, WhittMA, et al. (2001) Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor. Nat Struct Biol 8: 874–878.

16. BergelsonJM, ShepleyMP, ChanBM, HemlerME, FinbergRW (1992) Identification of the integrin VLA-2 as a receptor for echovirus 1. Science 255: 1718–1720.

17. BerinsteinA, RoivainenM, HoviT, MasonPW, BaxtB (1995) Antibodies to the vitronectin receptor (integrin alpha V beta 3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. J Virol 69: 2664–2666.

18. NokhbehMR, HazraS, AlexanderDA, KhanA, McAllisterM, et al. (2005) Enterovirus 70 binds to different glycoconjugates containing alpha2,3-linked sialic acid on different cell lines. J Virol 79: 7087–7094.

19. MistryN, InoueH, JamshidiF, StormRJ, ObersteMS, et al. (2011) Coxsackievirus A24 variant uses sialic acid-containing O-linked glycoconjugates as cellular receptors on human ocular cells. J Virol 85: 11283–11290.

20. FryEE, LeaSM, JacksonT, NewmanJW, EllardFM, et al. (1999) The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. EMBO J 18: 543–554.

21. PlevkaP, PereraR, CardosaJ, KuhnRJ, RossmannMG (2012) Crystal structure of human enterovirus 71. Science 336: 1274.

22. RossmannMG, HeY, KuhnRJ (2002) Picornavirus-receptor interactions. Trends Microbiol 10: 324–331.

23. HolmL, SanderC (1995) Dali: a network tool for protein structure comparison. Trends Biochem Sci 20: 478–480.

24. NeuU, BauerJ, StehleT (2011) Viruses and sialic acids: rules of engagement. Curr Opin Struct Biol 21: 610–618.

25. SauterNK, HansonJE, GlickGD, BrownJH, CrowtherRL, et al. (1992) Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography. Biochemistry 31: 9609–9621.

26. ImamuraT, OkamotoM, NakakitaS, SuzukiA, SaitoM, et al. (2014) Antigenic and receptor binding properties of enterovirus 68. J Virol 88: 2374–2384.

27. SabesanS, BockK, PaulsonJC (1991) Conformational analysis of sialyloligosaccharides. Carbohydr Res 218: 27–54.

28. RossmannMG (1989) The canyon hypothesis. Hiding the host cell receptor attachment site on a viral surface from immune surveillance. J Biol Chem 264: 14587–14590.

29. ZhouL, LuoY, WuY, TsaoJ, LuoM (2000) Sialylation of the host receptor may modulate entry of demyelinating persistent Theiler's virus. J Virol 74: 1477–1485.

30. FryEE, NewmanJW, CurryS, NajjamS, JacksonT, et al. (2005) Structure of Foot-and-mouth disease virus serotype A10 61 alone and complexed with oligosaccharide receptor: receptor conservation in the face of antigenic variation. J Gen Virol 86: 1909–1920.

31. Guzman-AranguezA, ArguesoP (2010) Structure and biological roles of mucin-type O-glycans at the ocular surface. Ocul Surf 8: 8–17.

32. NilssonEC, StormRJ, BauerJ, JohanssonSM, LookeneA, et al. (2011) The GD1a glycan is a cellular receptor for adenoviruses causing epidemic keratoconjunctivitis. Nat Med 17: 105–109.

33. SpjutS, QianW, BauerJ, StormR, FrangsmyrL, et al. (2011) A potent trivalent sialic acid inhibitor of adenovirus type 37 infection of human corneal cells. Angew Chem Int Ed Engl 50: 6519–6521.

34. KitovPI, SadowskaJM, MulveyG, ArmstrongGD, LingH, et al. (2000) Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature 403: 669–672.

35. DieboldY, CalongeM, Enriquez de SalamancaA, CallejoS, CorralesRM, et al. (2003) Characterization of a spontaneously immortalized cell line (IOBA-NHC) from normal human conjunctiva. Invest Ophthalmol Vis Sci 44: 4263–4274.

36. KabschW (2010) Xds. Acta Crystallogr D Biol Crystallogr 66: 125–132.

37. Collaborative Computational Project N (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50: 760–763.

38. Schrodinger LLC (2010) The PyMOL Molecular Graphics System, Version 1.3r1.

39. MurshudovGN, VaginAA, DodsonEJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53: 240–255.

40. AdamsPD, AfoninePV, BunkocziG, ChenVB, DavisIW, et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66: 213–221.

41. EmsleyP, LohkampB, ScottWG, CowtanK (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66: 486–501.

42. BakerNA, SeptD, JosephS, HolstMJ, McCammonJA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98: 10037–10041.

43. AllingerNL, RahmanM, LiiJH (1990) A molecular mechanics force field (MM3) for alcohols and ethers. Journal of the American Chemical Society 112: 8293–8307.

44. MorrisGM, GoodsellDS, HallidayRS, HueyR, HartWE, et al. (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 19: 1639–1662.

45. KriegerE, DardenT, NabuursSB, FinkelsteinA, VriendG (2004) Making optimal use of empirical energy functions: Force-field parameterization in crystal space. Proteins: Structure, Function, and Bioinformatics 57: 678–683.

46. DuanY, WuC, ChowdhuryS, LeeMC, XiongG, et al. (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry 24: 1999–2012.

47. WoodsRJ, DwekRA, EdgeCJ, Fraser-ReidB (1995) Molecular Mechanical and Molecular Dynamic Simulations of Glycoproteins and Oligosaccharides. 1. GLYCAM_93 Parameter Development. The Journal of Physical Chemistry 99: 3832–3846.

48. GouetP, CourcelleE, StuartDI, MetozF (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15: 305–308.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Hereditární TTR amyloidóza – vzácné, nebo jen neodhalené onemocnění? 2. díl
nový kurz

Eozinofilní granulomatóza s polyangiitidou

Betablokátory a Ca antagonisté z jiného úhlu
Autori: prof. MUDr. Michal Vrablík, Ph.D., MUDr. Petr Janský

Autori: doc. MUDr. Petr Čáp, Ph.D.

Farmakoterapie akutní a chronické bolesti

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Nemáte účet?  Registrujte sa

Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa