#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Phospholipid Flippase dATP8B Is Required for Odorant Receptor Function


The olfactory systems of insects are fundamental to critical behaviours such as finding mates, food and host plants. Insects can detect a wide range of environmental cues using three different families of olfactory receptor proteins. Why insects have three different families of receptor genes, and how they function together, is not fully understood. Here we identified a new gene, dATP8B, which is critically and specifically required for the function of only one of these receptor families in Drosophila. dATP8B is a member of the P4-type ATPases, or phospholipid flippases; these enzymes function in establishing a difference or asymmetry in lipid composition between the outer and inner leaflets of plasma membranes. This is thought to be important for many cellular membrane processes; however, specific functions of individual flippase proteins are not well described. We find that dATP8B is required for the function of the odorant receptor family, but not the ionotropic-like and gustatory receptor families. This further highlights the functional differences between these receptor families and suggests a role for phospholipids in the signalling of a specific family of receptor proteins.


Vyšlo v časopise: The Phospholipid Flippase dATP8B Is Required for Odorant Receptor Function. PLoS Genet 10(3): e32767. doi:10.1371/journal.pgen.1004209
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004209

Souhrn

The olfactory systems of insects are fundamental to critical behaviours such as finding mates, food and host plants. Insects can detect a wide range of environmental cues using three different families of olfactory receptor proteins. Why insects have three different families of receptor genes, and how they function together, is not fully understood. Here we identified a new gene, dATP8B, which is critically and specifically required for the function of only one of these receptor families in Drosophila. dATP8B is a member of the P4-type ATPases, or phospholipid flippases; these enzymes function in establishing a difference or asymmetry in lipid composition between the outer and inner leaflets of plasma membranes. This is thought to be important for many cellular membrane processes; however, specific functions of individual flippase proteins are not well described. We find that dATP8B is required for the function of the odorant receptor family, but not the ionotropic-like and gustatory receptor families. This further highlights the functional differences between these receptor families and suggests a role for phospholipids in the signalling of a specific family of receptor proteins.


Zdroje

1. BentonR, SachseS, MichnickSW, VosshallLB (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4 (2) e20.

2. SmartR, KielyA, BealeM, VargasE, CarraherC, et al. (2008) Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol 38: 770–780.

3. SatoK, PellegrinoM, NakagawaT, NakagawaT, VosshallLB, et al. (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452: 1002–1006.

4. WicherD, SchäferR, BauernfeindR, StensmyrMC, HellerR, et al. (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452: 1007–1011.

5. LarssonMC, DomingosAI, JonesWD, ChiappeE, AmreinH, et al. (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43: 703–714.

6. JonesPL, PaskGM, RinkerDC, ZwiebelLJ (2011) Functional agonism of insect odorant receptor ion channels. Proc Natl Acad Sci USA 108: 8821–8825.

7. NakagawaT, PellegrinoM, SatoK, VosshallLB, TouharaK (2012) Amino acid residues contributing to function of the heteromeric insect olfactory receptor complex. PLoS ONE 7: e32372.

8. StenglM, FunkNW (2013) The role of the coreceptor Orco in insect olfactory transduction. J Comp Physiol A 199: 897–909.

9. SargsyanV, GetahunMN, LlanosSL, OlssonSB, HanssonBS, et al. (2011) Phosphorylation via PKC regulates the function of the Drosophila odorant co-receptor. Front Cell Neurosci 5: 5.

10. KainP, ChakrabortyTS, SundaramS, SiddiqiO, RodriguesV, et al. (2008) Reduced odor responses from antennal neurons of Gqα, phospholipase Cβ, and rdgA mutants in Drosophila support a role for a phospholipid intermediate in insect olfactory transduction. J Neurosci 28: 4745–55.

11. YaoCA, CarlsonJR (2010) Role of G-proteins in odor-sensing and CO2-sensing neurons in Drosophila. J Neurosci 30: 4562–72.

12. DengY, ZhangW, FarhatK, OberlandS, GisselmannG, et al. (2011) The stimulatory Gαs protein is involved in olfactory signal transduction in Drosophila. PLoS One 6 (4) e18605.

13. GetahunMN, OlssonSB, Lavista-LlanosS, HanssonBS, WicherD (2013) Insect odorant response sensitivity is tuned by metabotropically autoregulated olfactory receptors. PLoS One 8 (3) e58889.

14. BentonR, VanniceKS, Gomez-DiazC, VosshallLB (2009) Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136: 149–162.

15. AbuinL, BargetonB, UlbrichMH, IsacoffEY, KellenbergerS, et al. (2011) Functional architecture of olfactory ionotropic glutamate receptors. Neuron 69: 44–60.

16. AiM, BlaisS, ParkJ-Y, MinS, NeubertTA, et al. (2011) Ionotropic glutamate receptors IR64a and IR8a form a functional odorant receptor complex in vivo in Drosophila. J Neurosci 33: 10741–10749.

17. ClynePJ, WarrCG, CarlsonJR (2000) Candidate taste receptors in Drosophila. Science 287: 1830–1834.

18. RobertsonHM, WarrCG, CarlsonJR (2003) Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci USA 100 (Suppl 2): 14537–14542.

19. HallemEA, CarlsonJR (2006) Coding of odors by a receptor repertoire. Cell 125: 143–160.

20. SilberingAF, RytzR, GrosjeanY, AbuinL, RamdyaP, et al. (2011) Complementary function and integrated wiring of the evolutionarily distinct Drosophila olfactory subsystems. J Neurosci 31: 13357–13375.

21. JonesWD, CayirliogluP, KadowIG, VosshallLB (2007) Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445: 86–90.

22. KwonJY, DahanukarA, WeissLA, CarlsonJR (2007) The molecular basis of CO2 reception in Drosophila. Proc Natl Acad Sci USA 104: 3574–3578.

23. MontellC (2009) A taste of the Drosophila gustatory receptors. Curr Opin Neurobiol 19: 345–353.

24. WeissLA, DahanukarA, KwonJY, BanerjeeD, CarlsonJR (2011) The molecular and cellular basis of bitter taste in Drosophila. Neuron 69: 258–272.

25. KoundakjianEJ, CowanDM, HardyRW, BeckerAH (2004) The Zuker collection: a resource for the analysis of autosomal gene function in Drosophila melanogaster. Genetics 167: 203–206.

26. TanakaK, Fujimura-KamadaK, YamamotoT (2011) Functions of phospholipid flippases. J Biochem 149: 131–143.

27. AnholtRRH, WilliamsTI (2010) The soluble proteome of the Drosophila antenna. Chem Senses 35: 21–30.

28. Van der VeldenLM, Van de GraafSFJ, KlompLWJ (2010) Biochemical and cellular functions of P4 ATPases. Biochem J 431: 1–11.

29. PaulusmaCC, Oude ElferinkRPJ (2010) P4 ATPases – The physiological relevance of lipid flipping transporters. FEBS Letters 584: 2708–2716.

30. LyssenkoNN, MitevaY, GilroyS, Hanna-RoseW, SchlegelRA (2008) An unexpectedly high degree of specialization and a widespread involvement in sterol metabolism among the C. elegans putative aminophospholipid translocases. BMC Dev Biol 8: 96.

31. MaZ, LiuZ, HuangX (2012) Membrane phospholipid asymmetry counters the adverse effects of sterol overloading in the Golgi membrane of Drosophila. Genetics 190: 1299–1308.

32. UjhazyP, OrtizD, MisraS, LiS, MoseleyJ, et al. (2001) Familial intrahepatic cholestasis 1: studies of localization and function. Hepatology 34: 768–775.

33. StapelbroekJM, PetersTA, van BeurdenDHA, CurfsJHAJ, JoostenA, et al. (2009) ATP8B1 is essential for maintaining normal hearing. Proc Natl Acad Sci USA 106: 9709–9714.

34. CaiSY, GautamS, NguyenT, SorokaCJ, RahnerC, et al. (2009) ATP8B1 deficiency disrupts the bile canalicular membrane bilayer structure in hepatocytes, but FXR expression and activity are maintained. Gastroenterology 136: 1060–1069.

35. FolmerDE, van der MarkVA, Ho-MokKS, Oude ElferinkRPJ, PaulusmaCC (2009) Differential effects of progressive familial intrahepatic cholestasis type 1 and benign recurrent intrahepatic cholestasis type 1 mutations on canalicular localization of ATP8B1. Hepatology 50: 1597–1605.

36. OrrJW, NewtonAC (1992) Interaction of Protein Kinase C with Phosphatidylserine. 2. Specificity and Regulation. Biochemistry 31: 4667–73.

37. SuhB-C, HilleB (2008) PIP2 is a necessary factor for ion channel function: How and why? Annu Rev Biophys 37: 175–95.

38. TomW, de BruyneM, HaehnelM, CarlsonJR, RayA (2011) Disruption of olfactory receptor neuron patterning in Scutoid mutant Drosophila. Mol Cell Neurosci 46: 252–261.

39. de BruyneM, ClynePJ, CarlsonJR (1999) Odor coding in a model olfactory organ: the Drosophila maxillary palp. J Neurosci 19: 4520–4532.

40. LiH, DurbinR (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760.

41. RobinsonJT, ThorvaldsdóttirH, WincklerW, GuttmanM, LanderES, et al. (2011) Integrative genomics viewer. Nat Biotechnol 29: 24–26.

42. LiH, HandsakerB, WysokerA, FennellT, RuanJ, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.

43. WangK, LiM, HakonarsonH (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38: e164.

44. TweedieS, AshburnerM, FallsK, LeylandP, McQuiltonP, et al. (2009) FlyBase: enhancing Drosophila Gene Ontology annotations. Nucleic Acids Res 37: D555–9.

45. MackayTFC, RichardsS, StoneEA, BarbadillaA, AyrolesJF, et al. (2012) The Drosophila melanogaster Genetic Reference Panel. Nature 482: 173–178.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#