#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The First Steps of Adaptation of to the Gut Are Dominated by Soft Sweeps


Adaptation to novel environments involves the accumulation of beneficial mutations. If these are rare the process will proceed slowly with each one sweeping to fixation on its own. On the contrary if they are common in clonal populations, individuals carrying different beneficial alleles will experience intense competition and only those clones carrying the stronger effect mutations will leave a future line of descent. This phenomenon is known as clonal interference and the extent to which it occurs in natural environments is unknown. One of the most complex natural environments for E. coli is the mammalian intestine, where it evolves in the presence of many species comprising the gut microbiota. We have studied the dynamics of adaptation of E. coli populations evolving in this relevant ecosystem. We show that clonal interference is pervasive in the mouse gut and that the targets of natural selection are similar in independently E. coli evolving populations. These results illustrate how experimental evolution in natural environments allows us to dissect the mechanisms underlying adaptation and its complex dynamics and further reveal the importance of mobile genetic elements in contributing to the adaptive diversification of bacterial populations in the gut.


Vyšlo v časopise: The First Steps of Adaptation of to the Gut Are Dominated by Soft Sweeps. PLoS Genet 10(3): e32767. doi:10.1371/journal.pgen.1004182
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004182

Souhrn

Adaptation to novel environments involves the accumulation of beneficial mutations. If these are rare the process will proceed slowly with each one sweeping to fixation on its own. On the contrary if they are common in clonal populations, individuals carrying different beneficial alleles will experience intense competition and only those clones carrying the stronger effect mutations will leave a future line of descent. This phenomenon is known as clonal interference and the extent to which it occurs in natural environments is unknown. One of the most complex natural environments for E. coli is the mammalian intestine, where it evolves in the presence of many species comprising the gut microbiota. We have studied the dynamics of adaptation of E. coli populations evolving in this relevant ecosystem. We show that clonal interference is pervasive in the mouse gut and that the targets of natural selection are similar in independently E. coli evolving populations. These results illustrate how experimental evolution in natural environments allows us to dissect the mechanisms underlying adaptation and its complex dynamics and further reveal the importance of mobile genetic elements in contributing to the adaptive diversification of bacterial populations in the gut.


Zdroje

1. AtwoodKC, SchneiderLK, RyanFJ (1951) Periodic selection in Escherichia coli. Proc Natl Acad Sci USA 37: 146–155.

2. HegrenessM, ShoreshN, HartlD, KishonyR (2006) An equivalence principle for the incorporation of favorable mutations in asexual populations. Science 311: 1615–1617 doi:311/5767/1615

3. KaoKC, SherlockG (2008) Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nature Genet 40: 1499–1504 doi:ng.280

4. MaharjanR, SeetoS, Notley-McRobbL, FerenciT (2006) Clonal adaptive radiation in a constant environment. Science 313: 514–517 doi:10.1126/science.1129865

5. PerfeitoL, FernandesL, MotaC, GordoI (2007) Adaptive mutations in bacteria: high rate and small effects. Science 317: 813–815 doi:317/5839/813

6. WoodsRJ, BarrickJE, CooperTF, ShresthaU, KauthMR, et al. (2011) Second-order selection for evolvability in a large Escherichia coli population. Science 331: 1433–1436 doi:10.1126/science.1198914

7. HillWG, RobertsonA (1966) The effect of linkage on limits to artificial selection. Genet Res 8: 269–294.

8. SniegowskiPD, GerrishPJ (2010) Beneficial mutations and the dynamics of adaptation in asexual populations. Philos Trans R Soc London B Biol Sci 365: 1255–1263 doi:365/1544/1255

9. BartonN, PartridgeL (2000) Limits to natural selection. Bioessays 22: 1075–1084 doi:;10.1002/1521-1878(200012)22:12<1075::AID-BIES5>3.0.CO;2-M

10. GordoI, PerfeitoL, SousaA (2011) Fitness effects of mutations in bacteria. J Mol Microbiol Biotechnol 21: 20–35 doi:000332747

11. SchiffelsS, SzollosiG, MustonenV, LassigM (2011) Emergent neutrality in adaptive asexual evolution. Genetics 189: 1361–1375 doi:genetics.111.132027

12. HerronMD, DoebeliM (2013) Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS Biol 11: e1001490 doi:10.1371/journal.pbio.1001490

13. DesaiMM, FisherDS, MurrayAW (2007) The speed of evolution and maintenance of variation in asexual populations. Curr Biol 17: 385–394 doi:S0960-9822(07)00984-0

14. StrelkowaN, LässigM (2012) Clonal interference in the evolution of influenza. Genetics 192: 671–682 doi:10.1534/genetics.112.143396

15. MesserPW, PetrovDA (2013) Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol Evol 28: 659–669 doi:10.1016/j.tree.2013.08.003

16. DesaiMM, FisherDS (2007) Beneficial mutation selection balance and the effect of linkage on positive selection. Genetics 176: 1759–1798 doi:genetics.106.067678

17. GoodBH, RouzineIM, BalickDJ, HallatschekO, DesaiMM (2012) Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations. Proc Natl Acad Sci 109: 4950–4955 doi:10.1073/pnas.1119910109

18. LassigM (2012) Chance and risk in adaptive evolution. Proc Natl Acad Sci USA 109: 4719–4720.

19. LederbergJ (2004) E. coli K-12. Microbiol Today 31: 116.

20. FabichAJ, LeathamMP, GrissomJE, WileyG, LaiH, et al. (2011) Genotype and phenotypes of an intestine-adapted Escherichia coli K-12 mutant selected by animal passage for superior colonization. Infect Immun 79: 2430–2439 doi:10.1128/IAI.01199-10

21. LeathamMP, StevensonSJ, GaugerEJ, KrogfeltKA, LinsJJ, et al. (2005) Mouse intestine selects nonmotile flhDC mutants of Escherichia coli MG1655 with increased colonizing ability and better utilization of carbon sources. Infect Immun 73: 8039–8049 doi:10.1128/IAI.73.12.8039

22. De PaepeM, Gaboriau-RouthiauV, RainteauD, RakotobeS, TaddeiF, et al. (2011) Trade-off between bile resistance and nutritional competence drives Escherichia coli diversification in the mouse gut. PLoS Genet 7: e1002107 doi:10.1371/journal.pgen.1002107 PGENETICS-D-11-00191

23. LeeMC, MarxCJ (2013) Synchronous waves of failed soft sweeps in the laboratory: remarkably rampant clonal interference of alleles at a single locus. Genetics 193: 943–952 doi:10.1534/genetics.112.148502

24. PoulsenLK, LichtTR, RangC, KrogfeltKA, MolinS (1995) Physiological state of Escherichia coli BJ4 growing in the large intestines of streptomycin-treated mice. J Bacteriol 177: 5840–5845.

25. BarrickJE, KauthMR, StrelioffCC, LenskiRE (2010) Escherichia coli rpoB mutants have increased evolvability in proportion to their fitness defects. Mol Biol Evol 27: 1338–1347 doi:10.1093/molbev/msq024

26. IllingworthCJR, MustonenV (2012) A method to infer positive selection from marker dynamics in an asexual population. Bioinformatics 28: 831–837 doi:10.1093/bioinformatics/btr722

27. Sousa JAMde, CamposPRA, GordoI (2013) An ABC method for estimating the rte and distribution of effects of beneficial mutations. Genome Biol Evol 5: 794–806 doi:10.1093/gbe/evt045

28. NobelmannB, LengelerJW (1996) Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism. J Bacteriol 178: 6790–6795.

29. YamadaM, SaierMHJr (1987) Physical and genetic characterization of the glucitol operon in Escherichia coli. J Bacteriol 169: 2990–2994.

30. ChangDE, SmalleyDJ, TuckerDL, LeathamMP, NorrisWE, et al. (2004) Carbon nutrition of Escherichia coli in the mouse intestine. Proc Natl Acad Sci USA 101: 7427–7432 doi:10.1073/pnas.0307888101

31. GaugerEJ, LeathamMP, Mercado-LuboR, LauxDC, ConwayT, et al. (2007) Role of motility and the flhDC operon in Escherichia coli MG1655 colonization of the mouse intestine. Infect Immun 75: 3315–3324 doi:10.1128/IAI.00052-07

32. EngelP, KrämerR, UndenG (1994) Transport of C4-dicarboxylates by anaerobically grown Escherichia coli. Energetics and mechanism of exchange, uptake and efflux. Eur J Biochem 222: 605–614.

33. JonesSA, GibsonT, MaltbyRC, ChowdhuryFZ, StewartV, et al. (2011) Anaerobic respiration of Escherichia coli in the mouse intestine. Infect Immun 79: 4218–4226 doi:10.1128/IAI.05395-11

34. SuppmannB, SawersG (1994) Isolation and characterization of hypophosphite-resistant mutants of Escherichia coli: identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter. Mol Microbiol 11: 965–982.

35. LeonhartsbergerS, KorsaI, BöckA (2002) The molecular biology of formate metabolism in enterobacteria. J Mol Microbiol Biotechnol 4: 269–276.

36. MacyJ, KullaH, GottschalkG (1976) H2-dependent anaerobic growth of Escherichia coli on L-malate: succinate formation. J Bacteriol 125: 423–428.

37. WimpennyJW, ColeJA (1967) The regulation of metabolism in facultative bacteria. 3. The effect of nitrate. Biochim Biophys Acta 148: 233–242.

38. JonesSA, ChowdhuryFZ, FabichAJ, AndersonA, SchreinerDM, et al. (2007) Respiration of Escherichia coli in the mouse intestine. Infect Immun 75: 4891–4899 doi:10.1128/IAI.00484-07

39. GiraudA, ArousS, De PaepeM, Gaboriau-RouthiauV, BambouJC, et al. (2008) Dissecting the genetic components of adaptation of Escherichia coli to the mouse gut. PLoS Genet 4: e2 doi:10.1371/journal.pgen.0040002

40. CarrollSB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134: 25–36 doi:10.1016/j.cell.2008.06.030

41. HoekstraHE, CoyneJA (2007) The locus of evolution: evo devo and the genetics of adaptation. Evolution 61: 995–1016 doi:10.1111/j.1558-5646.2007.00105.x

42. HottesAK, FreddolinoPL, KhareA, DonnellZN, LiuJC, et al. (2013) Bacterial adaptation through loss of function. PLoS Genet 9(7): e1003617.

43. MaharjanRP, FerenciT, ReevesPR, LiY, LiuB, et al. (2012) The multiplicity of divergence mechanisms in a single evolving population. Genome Biol 13: R41 doi:10.1186/gb-2012-13-6-r41

44. MasonTG, RichardsonG (1982) Observations on the in vivo and in vitro competition between strains of Escherichia coli isolated from the human gut. Journal of Applied Microbiology 53: 19–27 doi:10.1111/j.1365-2672.1982.tb04730.x

45. GafféJ, McKenzieC, MaharjanRP, CoursangeE, FerenciT, et al. (2011) Insertion sequence-driven evolution of Escherichia coli in chemostats. J Mol Evol 72: 398–412 doi:10.1007/s00239-011-9439-2

46. DaleyDO, RappM, GransethE, MelénK, DrewD, et al. (2005) Global topology analysis of the Escherichia coli inner membrane proteome. Science 308: 1321–1323 doi:10.1126/science.1109730

47. CedarH, SchwartzJH (1969) The asparagine synthetase of Escherhic coli. I. Biosynthetic role of the enzyme, purification, and characterization of the reaction products. J Biol Chem 244: 4112–4121.

48. RaineyPB, BucklingA, KassenR, TravisanoM (2000) The emergence and maintenance of diversity: insights from experimental bacterial populations. Trends Ecol Evol 15: 243–247.

49. Conway T, Krogfelt KA, Cohen PS (2004) The life of commensal Escherichia coli in the mammalian intestine. In: R. Curtiss III, editor.EcoSal - Escherichia coli and Salmonella: cellular and molecular biology.Washington, DC: ASM Press, Vol. Chapter 8.3.1.2 . Available: doi:10.1128/ecosal.8.3.1.2.

50. MillerJH (1996) Spontaneous mutators in bacteria: insights into pathways of mutagenesis and repair. Annu Rev Microbiol 50: 625–643 doi:10.1146/annurev.micro.50.1.625

51. GiraudA, RadmanM, MaticI, TaddeiF (2001) The rise and fall of mutator bacteria. Curr Opin Microbiol 4: 582–585.

52. GiraudA, MaticI, TenaillonO, ClaraA, RadmanM, et al. (2001) Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291: 2606–2608 doi:10.1126/science.1056421 291/5513/2606

53. MaharjanRP, LiuB, LiY, ReevesPR, WangL, et al. (2013) Mutation accumulation and fitness in mutator subpopulations of Escherichia coli. Biol Lett 9: 20120961 doi:10.1098/rsbl.2012.0961

54. SniegowskiPD, GerrishPJ, LenskiRE (1997) Evolution of high mutation rates in experimental populations of E. coli. Nature 387: 703–705 doi:10.1038/42701

55. WylieCS, TroutAD, KesslerDA, LevineH (2010) Optimal strategy for competence differentiation in bacteria. PLoS Genet 6(9): e1001108.

56. DatsenkoKA, WannerBL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640–6645 doi:10.1073/pnas.120163297

57. RangCU, LichtTR, MidtvedtT, ConwayPL, ChaoL, et al. (1999) Estimation of growth rates of Escherichia coli BJ4 in streptomycin-treated and previously germfree mice by in situ rRNA hybridization. Clin Diagn Lab Immunol 6: 434–436.

58. Leatham-JensenMP, Frimodt-MøllerJ, AdediranJ, MokszyckiME, BannerME, et al. (2012) The streptomycin-treated mouse intestine selects Escherichia coli envZ missense mutants that interact with dense and diverse intestinal microbiota. Infect Immun 80: 1716–1727 doi:10.1128/IAI.06193-11

59. Wilson K (2001) Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol Chapter 2 : Unit 2.4. doi:10.1002/0471142727.mb0204s56.

60. BarrickJE, YuDS, YoonSH, JeongH, OhTK, et al. (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461: 1243–1247 doi:nature08480

61. NingZ, CoxAJ, MullikinJC (2001) SSAHA: a fast search method for large DNA databases. Genome Res 11: 1725–1729 doi:10.1101/gr.194201

62. RobinsonJT, ThorvaldsdóttirH, WincklerW, GuttmanM, LanderES, et al. (2011) Integrative genomics viewer. Nat Biotechnol 29: 24–26 doi:10.1038/nbt.1754

63. BlattnerFR, PlunkettG, BlochCA, PernaNT, BurlandV, et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1462.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#