-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Temperate Phages Acquire DNA from Defective Prophages by Relaxed Homologous Recombination: The Role of Rad52-Like Recombinases
Temperate bacteriophages (or phages) are bacterial viruses that, unlike virulent phages, have the ability to enter a prophage dormant state upon infection, in which they stably replicate with the bacterial genome. A majority of bacterial genomes contain multiple active or defective prophages, and numerous bacterial phenotypes are modified by these prophages, such as increased virulence. These mobile genetic elements are subject to high levels of genetic exchanges, through which new genes are constantly imported into bacterial genomes. Phage-encoded homologous recombination enzymes, or recombinases, are potentially key actors in phage genome shuffling. In this work, we show that gene acquisition in temperate phages is strongly dependent on the presence of sequence homology, but is highly tolerant to divergence. We report that gene exchanges are mainly catalyzed by recombinases found on temperate phages, and show that four different Rad52-like recombinases have a relaxed fidelity in vivo, compared to RecA. This high capacity of exchange speeds up evolution of phages, and indirectly also the evolution of bacteria.
Vyšlo v časopise: Temperate Phages Acquire DNA from Defective Prophages by Relaxed Homologous Recombination: The Role of Rad52-Like Recombinases. PLoS Genet 10(3): e32767. doi:10.1371/journal.pgen.1004181
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004181Souhrn
Temperate bacteriophages (or phages) are bacterial viruses that, unlike virulent phages, have the ability to enter a prophage dormant state upon infection, in which they stably replicate with the bacterial genome. A majority of bacterial genomes contain multiple active or defective prophages, and numerous bacterial phenotypes are modified by these prophages, such as increased virulence. These mobile genetic elements are subject to high levels of genetic exchanges, through which new genes are constantly imported into bacterial genomes. Phage-encoded homologous recombination enzymes, or recombinases, are potentially key actors in phage genome shuffling. In this work, we show that gene acquisition in temperate phages is strongly dependent on the presence of sequence homology, but is highly tolerant to divergence. We report that gene exchanges are mainly catalyzed by recombinases found on temperate phages, and show that four different Rad52-like recombinases have a relaxed fidelity in vivo, compared to RecA. This high capacity of exchange speeds up evolution of phages, and indirectly also the evolution of bacteria.
Zdroje
1. D'HerelleF (1917) On an invisible microbe antagonistic toward dysenteric bacilli. Compte Rendu de l'Académie des Sciences 165 : 373–375.
2. TwortFW (1915) An Investigation on the Nature of ultra-microscopic Viruses. The Lancet 2 : 1241–1243.
3. KristensenDM, WallerAS, YamadaT, BorkP, MushegianAR, et al. (2013) Orthologous gene clusters and taxon signature genes for viruses of prokaryotes. J Bacteriol 195 (5) 941–50.
4. DuffyS, ShackeltonLA, HolmesEC (2008) Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9 : 267–276.
5. SanjuanR, NebotMR, ChiricoN, ManskyLM, BelshawR (2010) Viral mutation rates. J Virol 84 : 9733–9748.
6. BakerJ, LimbergerR, SchneiderSJ, CampbellA (1991) Recombination and modular exchange in the genesis of new lambdoid phages. New Biol 3 : 297–308.
7. van der WaltE, RybickiEP, VarsaniA, PolstonJE, BillharzR, et al. (2009) Rapid host adaptation by extensive recombination. J Gen Virol 90 : 734–746.
8. MuylkensB, FarnirF, MeurensF, SchyntsF, VanderplasschenA, et al. (2009) Coinfection with two closely related alphaherpesviruses results in a highly diversified recombination mosaic displaying negative genetic interference. J Virol 83 : 3127–3137.
9. HatfullGF (2008) Bacteriophage genomics. Curr Opin Microbiol 11 : 447–453.
10. NiwaO, YamagishiH, OzekiH (1978) Sequence homology in DNA molecules of temperate phages phi81, phi80 and lambda. Mol Gen Genet 159 : 259–268.
11. HendrixRW (2003) Bacteriophage genomics. Curr Opin Microbiol 6 : 506–511.
12. CanchayaC, ProuxC, FournousG, BruttinA, BrussowH (2003) Prophage genomics. Microbiol Mol Biol Rev 67 : 238–276 table of contents.
13. BotsteinD (1980) A theory of modular evolution for bacteriophages. Ann N Y Acad Sci 354 : 484–490.
14. LawrenceJG, HatfullGF, HendrixRW (2002) Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J Bacteriol 184 : 4891–4905.
15. BrussowH, DesiereF (2001) Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol Microbiol 39 : 213–222.
16. HayashiT, MakinoK, OhnishiM, KurokawaK, IshiiK, et al. (2001) Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 8 : 11–22.
17. BobayLM, RochaEP, TouchonM (2013) The adaptation of temperate bacteriophages to their host genomes. Mol Biol Evol 30 : 737–751.
18. TenaillonO, SkurnikD, PicardB, DenamurE (2010) The population genetics of commensal Escherichia coli. Nat Rev Microbiol 8 : 207–217.
19. MartinsohnJT, RadmanM, PetitMA (2008) The lambda red proteins promote efficient recombination between diverged sequences: implications for bacteriophage genome mosaicism. PLoS Genet 4: e1000065.
20. ClarkAJ, InwoodW, CloutierT, DhillonTS (2001) Nucleotide sequence of coliphage HK620 and the evolution of lambdoid phages. J Mol Biol 311 : 657–679.
21. HatfullGF, HendrixRW (2011) Bacteriophages and their genomes. Curr Opin Virol 1 : 298–303.
22. MurphyKC (2012) Phage recombinases and their applications. Adv Virus Res 83 : 367–414.
23. KuzminovA (1999) Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 63 : 751–813 table of contents.
24. ShenP, HuangHV (1986) Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112 : 441–457.
25. MajewskiJ, CohanFM (1999) DNA sequence similarity requirements for interspecific recombination in Bacillus. Genetics 153 : 1525–1533.
26. LopesA, Amarir-BouhramJ, FaureG, PetitMA, GueroisR (2010) Detection of novel recombinases in bacteriophage genomes unveils Rad52, Rad51 and Gp2.5 remote homologs. Nucleic Acids Res 38 : 3952–3962.
27. DubocH, RajcaS, RainteauD, BenarousD, MaubertMA, et al. (2013) Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 62 : 531–539.
28. TurpinW, HumblotC, NoordineML, WrzosekL, TomasJ, et al. Behavior of lactobacilli isolated from fermented slurry (ben-saalga) in gnotobiotic rats. PLoS One 8: e57711.
29. LiXT, ThomasonLC, SawitzkeJA, CostantinoN, CourtDL (2013) Bacterial DNA polymerases participate in oligonucleotide recombination. Mol Microbiol 88 : 906–920.
30. MuyrersJP, ZhangY, BuchholzF, StewartAF (2000) RecE/RecT and Redalpha/Redbeta initiate double-stranded break repair by specifically interacting with their respective partners. Genes Dev 14 : 1971–1982.
31. HayesS, AsaiK, ChuAM, HayesC (2005) NinR - and red-mediated phage-prophage marker rescue recombination in Escherichia coli: recovery of a nonhomologous immlambda DNA segment by infecting lambdaimm434 phages. Genetics 170 : 1485–1499.
32. CurtisFA, ReedP, WilsonLA, BowersLY, YeoRP, et al. (2011) The C-terminus of the phage lambda Orf recombinase is involved in DNA binding. J Mol Recognit 24 : 333–340.
33. SawitzkeJA, StahlFW (1997) Roles for lambda Orf and Escherichia coli RecO, RecR and RecF in lambda recombination. Genetics 147 : 357–369.
34. TarkowskiTA, MooneyD, ThomasonLC, StahlFW (2002) Gene products encoded in the ninR region of phage lambda participate in Red-mediated recombination. Genes Cells 7 : 351–363.
35. SharplesGJ, CurtisFA, McGlynnP, BoltEL (2004) Holliday junction binding and resolution by the Rap structure-specific endonuclease of phage lambda. J Mol Biol 340 : 739–751.
36. PoteeteAR (2004) Modulation of DNA repair and recombination by the bacteriophage lambda Orf function in Escherichia coli K-12. J Bacteriol 186 : 2699–2707.
37. AsadulghaniM, OguraY, OokaT, ItohT, SawaguchiA, et al. (2009) The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog 5: e1000408.
38. RuzinA, LindsayJ, NovickRP (2001) Molecular genetics of SaPI1–a mobile pathogenicity island in Staphylococcus aureus. Mol Microbiol 41 : 365–377.
39. GalletR, ShaoY, WangIN (2009) High adsorption rate is detrimental to bacteriophage fitness in a biofilm-like environment. BMC Evol Biol 9 : 241.
40. HendrixRW, DudaRL (1992) Bacteriophage lambda PaPa: not the mother of all lambda phages. Science 258 : 1145–1148.
41. ThalerDS, StahlMM, StahlFW (1987) Double-chain-cut sites are recombination hotspots in the Red pathway of phage lambda. J Mol Biol 195 : 75–87.
42. LiuX, JiangH, GuZ, RobertsJW (2013) High-resolution view of bacteriophage lambda gene expression by ribosome profiling. Proc Natl Acad Sci U S A 110 : 11928–11933.
43. KolodnerR, HallSD, Luisi-DeLucaC (1994) Homologous pairing proteins encoded by the Escherichia coli recE and recT genes. Mol Microbiol 11 : 23–30.
44. MillsS, ShanahanF, StantonC, HillC, CoffeyA, et al. (2013) Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes 4 : 4–16.
45. EllisHM, YuD, DiTizioT, CourtDL (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci U S A 98 : 6742–6746.
46. PoteeteAR, FentonAC, WangHR (2002) Recombination-promoting activity of the bacteriophage lambda Rap protein in Escherichia coli K-12. J Bacteriol 184 : 4626–4629.
47. HollifieldWC, KaplanEN, HuangHV (1987) Efficient RecABC-dependent, homologous recombination between coliphage lambda and plasmids requires a phage ninR region gene. Mol Gen Genet 210 : 248–255.
48. RotmanE, KouzminovaE, PlunkettG3rd, KuzminovA (2012) Genome of Enterobacteriophage Lula/phi80 and insights into its ability to spread in the laboratory environment. J Bacteriol 194 : 6802–6817.
49. IyerLM, KooninEV, AravindL (2002) Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52. BMC Genomics 3 : 8.
50. CampbellA (1994) Comparative molecular biology of lambdoid phages. Annu Rev Microbiol 48 : 193–222.
51. BouchardJD, MoineauS (2000) Homologous recombination between a lactococcal bacteriophage and the chromosome of its host strain. Virology 270 : 65–75.
52. DurmazE, KlaenhammerTR (2000) Genetic analysis of chromosomal regions of Lactococcus lactis acquired by recombinant lytic phages. Appl Environ Microbiol 66 : 895–903.
53. HallSD, KolodnerRD (1994) Homologous pairing and strand exchange promoted by the Escherichia coli RecT protein. Proc Natl Acad Sci U S A 91 : 3205–3209.
54. BobayLM, TouchonM, RochaEP (2013) Manipulating or superseding host recombination functions: a dilemma that shapes phage evolvability. PLoS Genet 9: e1003825.
55. SawitzkeJA, CostantinoN, LiXT, ThomasonLC, BubunenkoM, et al. (2011) Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering. J Mol Biol 407 : 45–59.
56. RadmanM, WagnerR (1993) DNA mismatch repair systems: mechanisms and applications in biotechnology. Biotechnol Genet Eng Rev 11 : 357–366.
57. ElezM, RadmanM, MaticI (2007) The frequency and structure of recombinant products is determined by the cellular level of MutL. Proc Natl Acad Sci U S A 104 : 8935–8940.
58. CostantinoN, CourtDL (2003) Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants. Proc Natl Acad Sci U S A 100 : 15748–15753.
59. PoteeteAR (2001) What makes the bacteriophage lambda Red system useful for genetic engineering: molecular mechanism and biological function. FEMS Microbiol Lett 201 : 9–14.
60. PloquinM, BransiA, PaquetER, StasiakAZ, StasiakA, et al. (2008) Functional and structural basis for a bacteriophage homolog of human RAD52. Curr Biol 18 : 1142–1146.
61. SokolH, SeksikP (2010) The intestinal microbiota in inflammatory bowel diseases: time to connect with the host. Curr Opin Gastroenterol 26 : 327–331.
62. SokolH, VasquezN, Hoyeau-IdrissiN, SeksikP, BeaugerieL, et al. (2010) Crypt abscess-associated microbiota in inflammatory bowel disease and acute self-limited colitis. World J Gastroenterol 16 : 583–587.
63. MottC, SymingtonLS (2011) RAD51-independent inverted-repeat recombination by a strand-annealing mechanism. DNA Repair (Amst) 10 : 408–415.
64. WrzosekL, MiquelS, NoordineML, BouetS, Chevalier-CurtMJ, et al. (2013) Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol 11 : 61.
65. CourtDL, SawitzkeJA, ThomasonLC (2002) Genetic engineering using homologous recombination. Annu Rev Genet 36 : 361–388.
66. PoteeteAR (2008) Involvement of DNA replication in phage lambda Red-mediated homologous recombination. Mol Microbiol 68 : 66–74.
67. MarescaM, ErlerA, FuJ, FriedrichA, ZhangY, et al. (2010) Single-stranded heteroduplex intermediates in lambda Red homologous recombination. BMC Mol Biol 11 : 54.
68. MosbergJA, LajoieMJ, ChurchGM (2010) Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 186 : 791–799.
69. NoirotP, KolodnerRD (1998) DNA strand invasion promoted by Escherichia coli RecT protein. J Biol Chem 273 : 12274–12280.
70. RybalchenkoN, GolubEI, BiB, RaddingCM (2004) Strand invasion promoted by recombination protein beta of coliphage lambda. Proc Natl Acad Sci U S A 101 : 17056–17060.
71. MontagD, SchwarzH, HenningU (1989) A component of the side tail fiber of Escherichia coli bacteriophage lambda can functionally replace the receptor-recognizing part of a long tail fiber protein of the unrelated bacteriophage T4. J Bacteriol 171 : 4378–4384.
72. Haggard-LjungquistE, HallingC, CalendarR (1992) DNA sequences of the tail fiber genes of bacteriophage P2: evidence for horizontal transfer of tail fiber genes among unrelated bacteriophages. J Bacteriol 174 : 1462–1477.
73. SandmeierH, IidaS, ArberW (1992) DNA inversion regions Min of plasmid p15B and Cin of bacteriophage P1: evolution of bacteriophage tail fiber genes. J Bacteriol 174 : 3936–3944.
74. SandmeierH (1994) Acquisition and rearrangement of sequence motifs in the evolution of bacteriophage tail fibres. Mol Microbiol 12 : 343–350.
75. ChopinA, BolotinA, SorokinA, EhrlichSD, ChopinM (2001) Analysis of six prophages in Lactococcus lactis IL1403: different genetic structure of temperate and virulent phage populations. Nucleic Acids Res 29 : 644–651.
76. MiquelS, MartinR, RossiO, Bermudez-HumaranLG, ChatelJM, et al. (2013) Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol 16 : 255–261.
77. LongM, BetranE, ThorntonK, WangW (2003) The origin of new genes: glimpses from the young and old. Nat Rev Genet 4 : 865–875.
78. SorekR, LawrenceCM, WiedenheftB (2013) CRISPR-mediated Adaptive Immune Systems in Bacteria and Archaea. Annu Rev Biochem 82 : 237–66.
79. LwoffA (1953) Lysogeny. Bacteriol Rev 17 : 269–337.
80. BrussowH, CanchayaC, HardtWD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68 : 560–602 table of contents.
81. PanisG, FrancheN, MejeanV, AnsaldiM (2012) Insights into the functions of a prophage recombination directionality factor. Viruses 4 : 2417–2431.
82. WangX, KimY, MaQ, HongSH, PokusaevaK, et al. (2010) Cryptic prophages help bacteria cope with adverse environments. Nat Commun 1 : 147.
83. RabinovichL, SigalN, BorovokI, Nir-PazR, HerskovitsAA (2012) Prophage Excision Activates Listeria Competence Genes that Promote Phagosomal Escape and Virulence. Cell 150 : 792–802.
84. DatsenkoKA, WannerBL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97 : 6640–6645.
85. BabaT, AraT, HasegawaM, TakaiY, OkumuraY, et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2 : 2006 0008.
86. GorisJ, KonstantinidisKT, KlappenbachJA, CoenyeT, VandammeP, et al. (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57 : 81–91.
Štítky
Genetika Reprodukčná medicína
Článek Sex Chromosome Turnover Contributes to Genomic Divergence between Incipient Stickleback SpeciesČlánek Final Pre-40S Maturation Depends on the Functional Integrity of the 60S Subunit Ribosomal Protein L3
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2014 Číslo 3- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- , a Gene That Influences the Anterior Chamber Depth, Is Associated with Primary Angle Closure Glaucoma
- Genomic View of Bipolar Disorder Revealed by Whole Genome Sequencing in a Genetic Isolate
- The Rate of Nonallelic Homologous Recombination in Males Is Highly Variable, Correlated between Monozygotic Twins and Independent of Age
- Genetic Determinants Influencing Human Serum Metabolome among African Americans
- Heterozygous and Inherited Mutations in the Smooth Muscle Actin () Gene Underlie Megacystis-Microcolon-Intestinal Hypoperistalsis Syndrome
- Genome-Wide Meta-Analysis of Homocysteine and Methionine Metabolism Identifies Five One Carbon Metabolism Loci and a Novel Association of with Ischemic Stroke
- Cancer Evolution Is Associated with Pervasive Positive Selection on Globally Expressed Genes
- Genetic Diversity in the Interference Selection Limit
- Integrating Multiple Genomic Data to Predict Disease-Causing Nonsynonymous Single Nucleotide Variants in Exome Sequencing Studies
- An Evolutionary Analysis of Antigen Processing and Presentation across Different Timescales Reveals Pervasive Selection
- Cleavage Factor I Links Transcription Termination to DNA Damage Response and Genome Integrity Maintenance in
- DNA Dynamics during Early Double-Strand Break Processing Revealed by Non-Intrusive Imaging of Living Cells
- Genetic Basis of Metabolome Variation in Yeast
- Modeling 3D Facial Shape from DNA
- Dysregulated Estrogen Receptor Signaling in the Hypothalamic-Pituitary-Ovarian Axis Leads to Ovarian Epithelial Tumorigenesis in Mice
- Photoactivated UVR8-COP1 Module Determines Photomorphogenic UV-B Signaling Output in
- Local Evolution of Seed Flotation in Arabidopsis
- Chromatin Targeting Signals, Nucleosome Positioning Mechanism and Non-Coding RNA-Mediated Regulation of the Chromatin Remodeling Complex NoRC
- Nucleosome Acidic Patch Promotes RNF168- and RING1B/BMI1-Dependent H2AX and H2A Ubiquitination and DNA Damage Signaling
- The -Induced Arabidopsis Transcription Factor Attenuates ABA Signaling and Renders Seedlings Sugar Insensitive when Present in the Nucleus
- Changes in Colorectal Carcinoma Genomes under Anti-EGFR Therapy Identified by Whole-Genome Plasma DNA Sequencing
- Selection of Orphan Rhs Toxin Expression in Evolved Serovar Typhimurium
- FAK Acts as a Suppressor of RTK-MAP Kinase Signalling in Epithelia and Human Cancer Cells
- Asymmetry in Family History Implicates Nonstandard Genetic Mechanisms: Application to the Genetics of Breast Cancer
- Co-translational Localization of an LTR-Retrotransposon RNA to the Endoplasmic Reticulum Nucleates Virus-Like Particle Assembly Sites
- Sex Chromosome Turnover Contributes to Genomic Divergence between Incipient Stickleback Species
- DWARF TILLER1, a WUSCHEL-Related Homeobox Transcription Factor, Is Required for Tiller Growth in Rice
- Functional Organization of a Multimodular Bacterial Chemosensory Apparatus
- Genome-Wide Analysis of SREBP1 Activity around the Clock Reveals Its Combined Dependency on Nutrient and Circadian Signals
- The Yeast Sks1p Kinase Signaling Network Regulates Pseudohyphal Growth and Glucose Response
- An Interspecific Fungal Hybrid Reveals Cross-Kingdom Rules for Allopolyploid Gene Expression Patterns
- Temperate Phages Acquire DNA from Defective Prophages by Relaxed Homologous Recombination: The Role of Rad52-Like Recombinases
- Dying Cells Protect Survivors from Radiation-Induced Cell Death in
- Determinants beyond Both Complementarity and Cleavage Govern MicroR159 Efficacy in
- The bHLH Factors Extramacrochaetae and Daughterless Control Cell Cycle in Imaginal Discs through the Transcriptional Regulation of the Phosphatase
- The First Steps of Adaptation of to the Gut Are Dominated by Soft Sweeps
- Bacterial Regulon Evolution: Distinct Responses and Roles for the Identical OmpR Proteins of Typhimurium and in the Acid Stress Response
- Final Pre-40S Maturation Depends on the Functional Integrity of the 60S Subunit Ribosomal Protein L3
- Mitogen-Activated Protein Kinase (MAPK) Pathway Regulates Branching by Remodeling Epithelial Cell Adhesion
- CDP-Diacylglycerol Synthetase Coordinates Cell Growth and Fat Storage through Phosphatidylinositol Metabolism and the Insulin Pathway
- Coronary Heart Disease-Associated Variation in Disrupts a miR-224 Binding Site and miRNA-Mediated Regulation
- TBX3 Regulates Splicing : A Novel Molecular Mechanism for Ulnar-Mammary Syndrome
- Identification of Interphase Functions for the NIMA Kinase Involving Microtubules and the ESCRT Pathway
- Is a Cancer-Specific Fusion Gene Recurrent in High-Grade Serous Ovarian Carcinoma
- LILRB2 Interaction with HLA Class I Correlates with Control of HIV-1 Infection
- Worldwide Patterns of Ancestry, Divergence, and Admixture in Domesticated Cattle
- Parent-of-Origin Effects Implicate Epigenetic Regulation of Experimental Autoimmune Encephalomyelitis and Identify Imprinted as a Novel Risk Gene
- The Phospholipid Flippase dATP8B Is Required for Odorant Receptor Function
- Noise Genetics: Inferring Protein Function by Correlating Phenotype with Protein Levels and Localization in Individual Human Cells
- DUF1220 Dosage Is Linearly Associated with Increasing Severity of the Three Primary Symptoms of Autism
- Sugar and Chromosome Stability: Clastogenic Effects of Sugars in Vitamin B6-Deficient Cells
- Pheromone-Sensing Neurons Expressing the Ion Channel Subunit Stimulate Male Courtship and Female Receptivity
- Gene-Based Sequencing Identifies Lipid-Influencing Variants with Ethnicity-Specific Effects in African Americans
- Telomere Shortening Unrelated to Smoking, Body Weight, Physical Activity, and Alcohol Intake: 4,576 General Population Individuals with Repeat Measurements 10 Years Apart
- A Combination of Activation and Repression by a Colinear Hox Code Controls Forelimb-Restricted Expression of and Reveals Hox Protein Specificity
- An ER Complex of ODR-4 and ODR-8/Ufm1 Specific Protease 2 Promotes GPCR Maturation by a Ufm1-Independent Mechanism
- Epigenetic Control of Effector Gene Expression in the Plant Pathogenic Fungus
- Genetic Dissection of Photoreceptor Subtype Specification by the Zinc Finger Proteins Elbow and No ocelli
- Validation and Genotyping of Multiple Human Polymorphic Inversions Mediated by Inverted Repeats Reveals a High Degree of Recurrence
- CYP6 P450 Enzymes and Duplication Produce Extreme and Multiple Insecticide Resistance in the Malaria Mosquito
- GC-Rich DNA Elements Enable Replication Origin Activity in the Methylotrophic Yeast
- An Epigenetic Signature in Peripheral Blood Associated with the Haplotype on 17q21.31, a Risk Factor for Neurodegenerative Tauopathy
- Lsd1 Restricts the Number of Germline Stem Cells by Regulating Multiple Targets in Escort Cells
- RBPJ, the Major Transcriptional Effector of Notch Signaling, Remains Associated with Chromatin throughout Mitosis, Suggesting a Role in Mitotic Bookmarking
- The Membrane-Associated Transcription Factor NAC089 Controls ER-Stress-Induced Programmed Cell Death in Plants
- The Functional Consequences of Variation in Transcription Factor Binding
- Comparative Genomic Analysis of N-Fixing and Non-N-Fixing spp.: Organization, Evolution and Expression of the Nitrogen Fixation Genes
- An Insulin-to-Insulin Regulatory Network Orchestrates Phenotypic Specificity in Development and Physiology
- Suicidal Autointegration of and Transposons in Eukaryotic Cells
- A Multi-Trait, Meta-analysis for Detecting Pleiotropic Polymorphisms for Stature, Fatness and Reproduction in Beef Cattle
- Genome-Wide DNA Methylation Analysis Predicts an Epigenetic Switch for GATA Factor Expression in Endometriosis
- Genome-Wide DNA Methylation Analysis of Human Pancreatic Islets from Type 2 Diabetic and Non-Diabetic Donors Identifies Candidate Genes That Influence Insulin Secretion
- The and Hybrid Incompatibility Genes Suppress a Broad Range of Heterochromatic Repeats
- The Kil Peptide of Bacteriophage λ Blocks Cytokinesis via ZipA-Dependent Inhibition of FtsZ Assembly
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Worldwide Patterns of Ancestry, Divergence, and Admixture in Domesticated Cattle
- Genome-Wide DNA Methylation Analysis of Human Pancreatic Islets from Type 2 Diabetic and Non-Diabetic Donors Identifies Candidate Genes That Influence Insulin Secretion
- Genetic Dissection of Photoreceptor Subtype Specification by the Zinc Finger Proteins Elbow and No ocelli
- GC-Rich DNA Elements Enable Replication Origin Activity in the Methylotrophic Yeast
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy