#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

An Epigenetic Signature in Peripheral Blood Associated with the Haplotype on 17q21.31, a Risk Factor for Neurodegenerative Tauopathy


Progressive supranuclear palsy (PSP) and frontotemporal dementia (FTD) are two neurodegenerative diseases linked, at the pathologic and genetic level, to the microtubule associated protein tau. We studied epigenetic changes (DNA methylation levels) in peripheral blood from patients with PSP, FTD, and unaffected controls. Analysis of genome-wide methylation patterns revealed significant differentially methylated probes in patients versus unaffected controls. Remarkably, differentially methylated probes in PSP vs. controls were preferentially clustered within the 17q21.31 region, previously known to harbor the major genetic risk factor for PSP. We identified and replicated a dose-dependent effect of the risk-associated H1 haplotype on methylation levels within the region in independent datasets in blood and brain. These data reveal that the H1 haplotype increases risk for tauopathy via differential methylation, indicating a mediating role for methylation in dementia pathophysiology.


Vyšlo v časopise: An Epigenetic Signature in Peripheral Blood Associated with the Haplotype on 17q21.31, a Risk Factor for Neurodegenerative Tauopathy. PLoS Genet 10(3): e32767. doi:10.1371/journal.pgen.1004211
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004211

Souhrn

Progressive supranuclear palsy (PSP) and frontotemporal dementia (FTD) are two neurodegenerative diseases linked, at the pathologic and genetic level, to the microtubule associated protein tau. We studied epigenetic changes (DNA methylation levels) in peripheral blood from patients with PSP, FTD, and unaffected controls. Analysis of genome-wide methylation patterns revealed significant differentially methylated probes in patients versus unaffected controls. Remarkably, differentially methylated probes in PSP vs. controls were preferentially clustered within the 17q21.31 region, previously known to harbor the major genetic risk factor for PSP. We identified and replicated a dose-dependent effect of the risk-associated H1 haplotype on methylation levels within the region in independent datasets in blood and brain. These data reveal that the H1 haplotype increases risk for tauopathy via differential methylation, indicating a mediating role for methylation in dementia pathophysiology.


Zdroje

1. FeinbergAP (2010) Epigenomics reveals a functional genome anatomy and a new approach to common disease. Nat Biotechnol 28: 1049–1052 doi:10.1038/nbt1010-1049

2. PortelaA, EstellerM (2010) Epigenetic modifications and human disease. Nat Biotechnol 28: 1057–1068 doi:10.1038/nbt.1685

3. ZoghbiHY (2009) Rett syndrome: what do we know for sure? Nat Neurosci 12: 239–240 doi:10.1038/nn0309-239

4. UrdinguioRG, Sanchez-Mut JV, EstellerM (2009) Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 8: 1056–1072 doi:10.1016/S1474-4422(09)70262-5

5. JakovcevskiM, AkbarianS (2012) Epigenetic mechanisms in neurological disease. Nat Med 18: 1194–1204 doi:10.1038/nm.2828

6. AkbarianS, BeeriMS, HaroutunianV (2013) Epigenetic Determinants of Healthy and Diseased Brain Aging and Cognition. JAMA Neurol 1–8 doi:10.1001/jamaneurol.2013.1459

7. LuH, LiuX, DengY, QingH (2013) DNA methylation, a hand behind neurodegenerative diseases. Front Aging Neurosci 5: 85 doi:10.3389/fnagi.2013.00085

8. Ladd-AcostaC, PevsnerJ, SabunciyanS, YolkenRH, WebsterMJ, et al. (2007) DNA methylation signatures within the human brain. Am J Hum Genet 81: 1304–1315 doi:10.1086/524110

9. Van EijkKR, de JongS, BoksMP, LangeveldT, ColasF, et al. (2012) Genetic analysis of DNA methylation and gene expression levels in whole blood of healthy human subjects. BMC Genomics 13: 636 doi:10.1186/1471-2164-13-636

10. HernandezDG, NallsMa, GibbsJR, ArepalliS, van der BrugM, et al. (2011) Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum Mol Genet 20: 1164–1172 doi:10.1093/hmg/ddq561

11. HorvathS (2013) DNA methylation age of human tissues and cell types. Genome Biol 14: R115 doi:10.1186/gb-2013-14-10-r115

12. SteeleJ, RichardsonJ, OlzewskiJ (1964) Progressive supranuclear palsy. Arch Neurol 10: 333–359.

13. WilliamsDR, LeesAJ (2009) Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol 8: 270–279 doi:10.1016/S1474-4422(09)70042-0

14. BoeveBF (2012) Progressive supranuclear palsy. Parkinsonism Relat Disord 18 Suppl 1: S192–4 doi:10.1016/S1353-8020(11)70060-8

15. HuttonM, LendonCL, RizzuP, BakerM, FroelichS, et al. (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393: 702–705.

16. CoppolaG, ChinnathambiS, LeeJJ, DombroskiBa, BakerMC, et al. (2012) Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases. Hum Mol Genet 21: 3500–3512 doi:10.1093/hmg/dds161

17. HöglingerGU, MelhemNM, DicksonDW, SleimanPMa, WangL-S, et al. (2011) Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet 43: 699–705 doi:10.1038/ng.859

18. ConradC, AndreadisA, TrojanowskiJQ, DicksonDW, KangD, et al. (1997) Genetic evidence for the involvement of tau in progressive supranuclear palsy. Ann Neurol 41: 277–281.

19. Wade-MartinsR (2012) Genetics: The MAPT locus-a genetic paradigm in disease susceptibility. Nat Rev Neurol 8: 477–478 doi:10.1038/nrneurol.2012.169

20. KalinderiK, FidaniL, BostantjopoulouS (2009) From 1997 to 2007: a decade journey through the H1 haplotype on 17q21 chromosome. Parkinsonism Relat Disord 15: 2–5 doi:10.1016/j.parkreldis.2008.03.001

21. PittmanAM, MyersAJ, Abou-SleimanP, FungHC, KaleemM, et al. (2005) Linkage disequilibrium fine mapping and haplotype association analysis of the tau gene in progressive supranuclear palsy and corticobasal degeneration. J Med Genet 42: 837–846 doi:10.1136/jmg.2005.031377

22. KauweJSK, CruchagaC, MayoK, FenoglioC, BertelsenS, et al. (2008) Variation in MAPT is associated with cerebrospinal fluid tau levels in the presence of amyloid-beta deposition. Proc Natl Acad Sci U S A 105: 8050–8054 doi:10.1073/pnas.0801227105

23. GrömpingU (2006) Relative Importance for Linear Regression in R: The Package relaimpo. J Stat Softw 17: 1–27.

24. HousemanEA, AccomandoWP, KoestlerDC, ChristensenBC, MarsitCJ, et al. (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13: 86 doi:10.1186/1471-2105-13-86

25. KoestlerDC, ChristensenB, KaragasMR, MarsitCJ, LangevinSM, et al. (2013) Blood-based profiles of DNA methylation predict the underlying distribution of cell types: a validation analysis. Epigenetics 8: 816–826 doi:10.4161/epi.25430

26. LiuY, AryeeMJ, PadyukovL, FallinMD, HesselbergE, et al. (2013) Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 31: 142–147 doi:10.1038/nbt.2487

27. EvansW, FungHC, SteeleJ, EerolaJ, TienariP, et al. (2004) The tau H2 haplotype is almost exclusively Caucasian in origin. Neurosci Lett 369: 183–185 doi:10.1016/j.neulet.2004.05.119

28. HeynH, LiN, FerreiraHJ, MoranS, PisanoDG, et al. (2012) Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci U S A 109: 10522–10527 doi:10.1073/pnas.1120658109

29. GibbsJR, van der BrugMP, HernandezDG, TraynorBJ, NallsMa, et al. (2010) Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet 6: e1000952 doi:10.1371/journal.pgen.1000952

30. ZhangD, ChengL, BadnerJA, ChenC, ChenQ, et al. (2010) Genetic control of individual differences in gene-specific methylation in human brain. Am J Hum Genet 86: 411–419 doi:10.1016/j.ajhg.2010.02.005

31. SchadtEE, LambJ, YangX, ZhuJ, EdwardsS, et al. (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37: 710–717 doi:10.1038/ng1589

32. ZhuJ, WienerMC, ZhangC, FridmanA, MinchE, et al. (2007) Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations. PLoS Comput Biol 3: e69 doi:10.1371/journal.pcbi.0030069

33. Pearl J (2009) Causality, 2nd Edition. Cambridge: Cambridge University Press.

34. VansteelandtS, LangeC (2012) Causation and causal inference for genetic effects. Hum Genet 1665–1676 doi:10.1007/s00439-012-1208-9

35. AtenJE, FullerTF, LusisAJ, HorvathS (2008) Using genetic markers to orient the edges in quantitative trait networks: the NEO software. BMC Syst Biol 2: 34 doi:10.1186/1752-0509-2-34

36. BakerM, LitvanI, HouldenH, AdamsonJ, DicksonD, et al. (1999) Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet 8: 711–715.

37. CaffreyTM, Wade-MartinsR (2012) The role of MAPT sequence variation in mechanisms of disease susceptibility. Biochem Soc Trans 40: 687–692 doi:10.1042/BST20120063

38. PittmanAM, MyersAJ, DuckworthJ, BrydenL, HansonM, et al. (2004) The structure of the tau haplotype in controls and in progressive supranuclear palsy. Hum Mol Genet 13: 1267–1274 doi:10.1093/hmg/ddh138

39. StefanssonH, HelgasonA, ThorleifssonG, SteinthorsdottirV, MassonG, et al. (2005) A common inversion under selection in Europeans. Nat Genet 37: 129–137 doi:10.1038/ng1508

40. RademakersR, MelquistS, CrutsM, TheunsJ, Del-FaveroJ, et al. (2005) High-density SNP haplotyping suggests altered regulation of tau gene expression in progressive supranuclear palsy. Hum Mol Genet 14: 3281–3292 doi:10.1093/hmg/ddi361

41. MyersAJ, PittmanAM, ZhaoAS, RohrerK, KaleemM, et al. (2007) The MAPT H1c risk haplotype is associated with increased expression of tau and especially of 4 repeat containing transcripts. Neurobiol Dis 25: 561–570 doi:10.1016/j.nbd.2006.10.018

42. HayesmooreJB, BrayNJ, CrossWC, OwenMJ, O'DonovanMC, et al. (2009) The effect of age and the H1c MAPT haplotype on MAPT expression in human brain. Neurobiol Aging 30: 1652–1656 doi:10.1016/j.neurobiolaging.2007.12.017

43. TrabzuniD, WrayS, VandrovcovaJ, RamasamyA, WalkerR, et al. (2012) MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies. Hum Mol Genet 1–10 doi:10.1093/hmg/dds238

44. CaffreyTM, JoachimC, Wade-MartinsR (2008) Haplotype-specific expression of the N-terminal exons 2 and 3 at the human MAPT locus. Neurobiol Aging 29: 1923–1929 doi:10.1016/j.neurobiolaging.2007.05.002

45. CaffreyTM, JoachimC, ParacchiniS, EsiriMM, Wade-MartinsR (2006) Haplotype-specific expression of exon 10 at the human MAPT locus. Hum Mol Genet 15: 3529–3537 doi:10.1093/hmg/ddl429

46. Simón-SánchezJ, SchulteC, BrasJM, SharmaM, GibbsJR, et al. (2009) Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat Genet 41: 1308–1312 doi:10.1038/ng.487

47. Vilariño-GüellC, Soto-OrtolazaAI, RajputA, MashDC, PapapetropoulosS, et al. (2011) MAPT H1 haplotype is a risk factor for essential tremor and multiple system atrophy. Neurology 76: 670–672 doi:10.1212/WNL.0b013e31820c30c1

48. LiuY, AryeeMJ, PadyukovL, FallinMD, HesselbergE, et al. (2013) Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol doi:10.1038/nbt.2487

49. GhoshS, YatesAJ, FrühwaldMC, MiecznikowskiJC, PlassC, et al. (2010) Tissue specific DNA methylation of CpG islands in normal human adult somatic tissues distinguishes neural from non-neural tissues. Epigenetics 5: 527–538.

50. DaviesMN, VoltaM, PidsleyR, LunnonK, DixitA, et al. (2012) Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol 13: R43 doi:10.1186/gb-2012-13-6-r43

51. CoppolaG, KarydasA, RademakersR, WangQ, BakerM, et al. (2008) Gene expression study on peripheral blood identifies progranulin mutations. Ann Neurol 64: 92–96 doi:10.1002/ana.21397

52. CoppolaG, BurnettR, PerlmanS, VersanoR, GaoF, et al. (2011) A gene expression phenotype in lymphocytes from Friedreich ataxia patients. Ann Neurol 70: 790–804 doi:10.1002/ana.22526

53. CoppolaG, MillerB, ChuiH, VarpetianA, LeveyA, et al. (2007) Genetic Investigation in Frontotemporal Dementia and Alzheimer's Disease: the GIFT Study. Ann Neurol 62.

54. GuH, SmithZD, BockC, BoyleP, GnirkeA, et al. (2011) Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc 6: 468–481 doi:10.1038/nprot.2010.190

55. GuoW, FizievP, YanW, CokusS, SunX, et al. (2013) BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics 14: 774 doi:10.1186/1471-2164-14-774

56. Hansen KD, Aryee M (n.d.) minfi: Analyze Illumina's 450 k methylation arrays. R package version 1.0.0.

57. MaksimovicJ, GordonL, OshlackA (2012) SWAN: Subset-quantile within array normalization for illumina infinium HumanMethylation450 BeadChips. Genome Biol 13: R44 doi:10.1186/gb-2012-13-6-r44

58. ChenY-A, LemireM, ChoufaniS, ButcherDT, GrafodatskayaD, et al. (2013) Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 8: 203–209.

59. Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W, editors. Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer, New York. pp. 397–420.

60. BellJT, TsaiP-C, YangT-P, PidsleyR, NisbetJ, et al. (2012) Epigenome-Wide Scans Identify Differentially Methylated Regions for Age and Age-Related Phenotypes in a Healthy Ageing Population. PLoS Genet 8: e1002629 doi:10.1371/journal.pgen.1002629

61. JohnsonWE, LiC, RabinovicA (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8: 118–127 doi:10.1093/biostatistics/kxj037

62. PurcellS, NealeB, Todd-BrownK, ThomasL, FerreiraMAR, et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81: 559–575 doi:10.1086/519795

63. CoppolaG (2011) Designing, performing, and interpreting a microarray-based gene expression study. Methods Mol Biol 793: 417–439 doi:_10.1007/978-1-61779-328-8_28

64. Horvath S (2011) Weighted Network Analysis. Springer.

65. KrzywinskiM, ScheinJ, BirolI, ConnorsJ, GascoyneR, HorsmanD, JonesSJ, MarraMA (2009) Circos: an information aesthetic for comparative genomics. Genome res 19: 1639–1645.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#