#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Comparative Genomic Analysis of N-Fixing and Non-N-Fixing spp.: Organization, Evolution and Expression of the Nitrogen Fixation Genes


We sequenced the genomes of 11 N2-fixing Paenibacillus strains and demonstrated the genomic diversity of the genus Paenibacillus by comparing these strains to each other and to 20 other strains (4 N2-fixing and 16 non-N2-fixing strains) that were sequenced previously. Phylogenetic analysis of the concatenated 275 single-copy core genes suggests that ancestral Paenibacillus did not fix nitrogen and the N2-fixing strains fall into two sub-groups, which were likely originated from a N2-fixing common ancestor. A minimal and compact nif cluster comprising nine nif genes encoding Mo-nitrogenase is highly conserved in the 15 N2-fixing strains. Variations in the nif cluster and in the chromosomal regions surrounding the nif cluster between two sub-groups imply at least two independent acquisitions with insertion of distinct nif cluster variants in different genomic sites of Paenibacillus in early evolutionary history. Phylogeny of the concatenated NifHDK sequences suggests that Paenibacillus and Frankia are sister groups. The nif cluster, a functional unit for nitrogen fixation, was lost, producing some non-N2-fixing strains. There were recent events of acquisition of vnf and anf genes, causing further diversification of some strains. The evolution of nitrogen fixation in Paenibacillus involves a mix of gain, loss, HGT and duplication of nif/anf/vnf genes.


Vyšlo v časopise: Comparative Genomic Analysis of N-Fixing and Non-N-Fixing spp.: Organization, Evolution and Expression of the Nitrogen Fixation Genes. PLoS Genet 10(3): e32767. doi:10.1371/journal.pgen.1004231
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004231

Souhrn

We sequenced the genomes of 11 N2-fixing Paenibacillus strains and demonstrated the genomic diversity of the genus Paenibacillus by comparing these strains to each other and to 20 other strains (4 N2-fixing and 16 non-N2-fixing strains) that were sequenced previously. Phylogenetic analysis of the concatenated 275 single-copy core genes suggests that ancestral Paenibacillus did not fix nitrogen and the N2-fixing strains fall into two sub-groups, which were likely originated from a N2-fixing common ancestor. A minimal and compact nif cluster comprising nine nif genes encoding Mo-nitrogenase is highly conserved in the 15 N2-fixing strains. Variations in the nif cluster and in the chromosomal regions surrounding the nif cluster between two sub-groups imply at least two independent acquisitions with insertion of distinct nif cluster variants in different genomic sites of Paenibacillus in early evolutionary history. Phylogeny of the concatenated NifHDK sequences suggests that Paenibacillus and Frankia are sister groups. The nif cluster, a functional unit for nitrogen fixation, was lost, producing some non-N2-fixing strains. There were recent events of acquisition of vnf and anf genes, causing further diversification of some strains. The evolution of nitrogen fixation in Paenibacillus involves a mix of gain, loss, HGT and duplication of nif/anf/vnf genes.


Zdroje

1. FalkowskiPG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387: 272–275.

2. Dos SantosPC, FangZ, MasonSW, SetubalJC, DixonR (2012) Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13: 162.

3. ArnoldW, RumpA, KlippW, PrieferUB, PühlerA (1988) Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae. J Mol Biol 203: 715–738.

4. SetubalJC, dos SantosP, GoldmanBS, ErtesvågH, EspinG, et al. (2009) Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 191: 4534–4545.

5. NormandP, BouquetJ (1989) Phylogeny of nitrogenase sequences in Frankia and other nitrogen-fixing microorganisms. J Mol Evol 29: 436–447.

6. NormandP, GouyM, CournoyerB, SimonetP (1992) Nucleotide sequence of nifD from Frankia alni strain ArI3: phylogenetic inferences. Mol Biol Evol 9: 495–506.

7. HartmannLS, BarnumSR (2010) Inferring the evolutionary history of Mo-dependent nitrogen fixation from phylogenetic studies of nifK and nifDK. J Mol Evol 71: 70–85.

8. RaymondJ, SiefertJL, StaplesCR, BlankenshipRE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21: 541–554.

9. LeighJA (2000) Nitrogen fixation in methanogens: the archaeal perspective. Crit Rev Microbiol 2: 125–131.

10. BoydE, HamiltonT, PetersJ (2011) An alternative path for the evolution of biological nitrogen fixation. Front Microbiol 2: 205 doi: 10.3389/fmicb.2011.00205

11. BoydE, AnbarA, MillerS, HamiltonT, LavinM, et al. (2011) A late methanogen origin for molybdenum-dependent nitrogenase. Geobiology 9: 221–232.

12. YanY, YangJ, DouY, ChenM, PingS, et al. (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci U S A 105: 7564–7569.

13. PedrosaFO, MonteiroRA, WassemR, CruzLM, AyubRA, et al. (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet 7: e1002064.

14. BaarC, EppingerM, RaddatzG, SimonJ, LanzC, et al. (2003) Complete genome sequence and analysis of Wolinella succinogenes. Proc Natl Acad Sci U S A 100: 11690–11695.

15. HuY, FayAW, LeeCC, YoshizawaJ, RibbeMW (2008) Assembly of nitrogenase MoFe protein. Biochemistry 47: 3973–3981.

16. RubioLM, LuddenPW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 62: 93–111.

17. KaiserJT, HuY, WiigJA, ReesDC, RibbeMW (2011) Structure of precursor-bound NifEN: a nitrogenase FeMo cofactor maturase/insertase. Science 331: 91–94.

18. JoergerRD, BishopPE, EvansHJ (1988) Bacterial alternative nitrogen fixation systems. Crit Rev Microbiol 16: 1–14.

19. RubioLM, LuddenPW (2005) Maturation of nitrogenase: a biochemical puzzle. J Bacteriol 187: 405–414.

20. ChisnellJ, PremakumarR, BishopP (1988) Purification of a second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. J Bacteriol 170: 27–33.

21. DavisR, LehmanL, PetrovichR, ShahVK, RobertsGP, et al. (1996) Purification and characterization of the alternative nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum. J Bacteriol 178: 1445–1450.

22. SchneiderK, MullerA, SchrammU, KlippW (1991) Demonstration of a molybdenum- and vanadium-dependent nitrogenase in a nifHDK-deletion mutant of Rhodobacter capsulatus. Eur J Biochem 195: 653–661.

23. LalS, TabacchioniS (2009) Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian J Microbiol 49: 2–10.

24. McSpadden GardenerBB (2004) Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94: 1252–1258.

25. MontesMJ, MercadéE, BozalN, GuineaJ (2004) Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 54: 1521–1526.

26. OuyangJ, PeiZ, LutwickL, DalalS, YangL, et al. (2008) Paenibacillus thiaminolyticus: a new cause of human infection, inducing bacteremia in a patient on hemodialysis. Ann Clin Lab Sci 38: 393–400.

27. AshC, PriestFG, CollinsMD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 64: 253–260.

28. MaY, XiaZ, LiuX, ChenS (2007) Paenibacillus sabinae sp. nov., a nitrogen-fixing species isolated from the rhizosphere soils of shrubs. Int J Syst Evol Microbiol 57: 6–11.

29. MaY, ZhangJ, ChenS (2007) Paenibacillus zanthoxyli sp. nov., a novel nitrogen-fixing species isolated from the rhizosphere of Zanthoxylum simulans. Int J Syst Evol Microbiol 57: 873–877.

30. MaY, ChenS (2008) Paenibacillus forsythiae sp. nov., a nitrogen-fixing species isolated from rhizosphere soil of Forsythia mira. Int J Syst Evol Microbiol 58: 319–323.

31. HongY, MaY, ZhouY, GaoF, LiuH, et al. (2009) Paenibacillus sonchi sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus. Int J Syst Evol Microbiol 59: 2656–2661.

32. JinH, LvJ, ChenS (2011) Paenibacillus sophorae sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sophora japonica. Int J Syst Evol Microbiol 61: 767–771.

33. JinH, ZhouY, LiuH, ChenS (2011) Paenibacillus jilunlii sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Begonia semperflorens. Int J Syst Evol Microbiol 61: 1350–1355.

34. XieJ, ZhangL, ZhouY, LiuH, ChenS (2012) Paenibacillus taohuashanense sp. nov., a nitrogen-fixing species isolated from rhizosphere soil of the root of Caragana kansuensis Pojark. Antonie van Leeuwenhoek 102: 735–741.

35. WangL, LiJ, LiQX, ChenS (2013) Paenibacillus beijingensis sp. nov., a nitrogen-fixing species isolated from wheat rhizosphere soil. Antonie van Leeuwenhoek 104: 675–683.

36. ChowV, NongG, JohnFJS, RiceJD, DicksteinE, et al. (2012) Complete genome sequence of Paenibacillus sp. strain JDR-2. Stand Genomic Sci 6: 1–10.

37. MeadDA, LucasS, CopelandA, LapidusA, ChengJ, et al. (2012) Complete genome sequence of Paenibacillus strain Y412MC10, a novel Paenibacillus lautus strain isolated from Obsidian hot spring in Yellowstone national park. Stand Genomic Sci 6: 381–400.

38. MaM, WangZ, LiL, JiangX, GuanD, et al. (2012) Complete genome sequence of Paenibacillus mucilaginosus 3016, a bacterium functional as microbial fertilizer. J Bacteriol 194: 2777–2778.

39. KimJF, JeongH, ParkS, KimS, ParkYK, et al. (2010) Genome sequence of the polymyxin-producing plant-probiotic rhizobacterium Paenibacillus polymyxa E681. J Bacteriol 192: 6103–6104.

40. MaM, WangC, DingY, LiL, ShenD, et al. (2011) Complete genome sequence of Paenibacillus polymyxa SC2, a strain of plant growth-promoting rhizobacterium with broad-spectrum antimicrobial activity. J Bacteriol 193: 311–312.

41. Sirota-MadiA, OlenderT, HelmanY, BrainisI, FinkelshteinA, et al. (2012) Genome sequence of the pattern-forming social bacterium Paenibacillus dendritiformis C454 chiral morphotype. J Bacteriol 194: 2127–2128.

42. DingR, LiY, QianC, WuX (2011) Draft Genome sequence of Paenibacillus elgii B69, a strain with broad antimicrobial activity. J Bacteriol 193: 4537–4537.

43. JeongH, ChoiS, ParkS, KimS, ParkS (2012) Draft genome sequence of Paenibacillus peoriae strain KCTC 3763T. J Bacteriol 194: 1237–1238.

44. Sirota-MadiA, OlenderT, HelmanY, InghamC, BrainisI, et al. (2010) Genome sequence of the pattern forming Paenibacillus vortex bacterium reveals potential for thriving in complex environments. BMC Genomics 11: 710.

45. LiN, XiaT, XuY, QiuR, XiangH, et al. (2012) Genome sequence of Paenibacillus sp. strain Aloe-11, an endophytic bacterium with broad antimicrobial activity and intestinal colonization ability. J Bacteriol 194: 2117–2118.

46. ShinSH, KimS, KimJY, SongHY, ChoSJ, et al. (2012) Genome sequence of Paenibacillus terrae HPL-003, a xylanase-producing bacterium isolated from soil found in forest residue. J Bacteriol 194: 1266–1266.

47. MerrittPM, DanhornT, FuquaC (2007) Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation. J Bacteriol 189: 8005–8014.

48. OhCJ, KimHB, KimJ, KimWJ, LeeH, et al. (2012) Organization of nif gene cluster in Frankia sp. EuIK1 strain, a symbiont of Elaeagnus umbellata. Arch Microbiol 194: 29–34.

49. WelshEA, LibertonM, StöckelJ, LohT, ElvitigalaT, et al. (2008) The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle. Proc Natl Acad Sci U S A 105: 15094–15099.

50. WangL, ZhangL, LiuZ, ZhaoD, LiuX, et al. (2013) A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli. PLoS Genet 9: e1003865.

51. Leigh J (2005) Genomics of diazotrophic archaea. Genomes and genomics of nitrogen-fixing organisms: Springer. pp. 7–12.

52. RichterM, Rosselló-MóraR (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106: 19126–19131.

53. XieJB, BaiLQ, WangLY, ChenSF (2012) Phylogeny of 16S rRNA and nifH genes and regulation of nitrogenase activity by oxygen and ammonium in the genus Paenibacillus. Mikrobiologiia 81: 760–767.

54. MontoyaJP, VossM, KahlerP, CaponeDG (1996) A simple, high-precision, high-sensitivity tracer assay for N (inf2) fixation. Appl Environ Microbiol 62: 986–993.

55. DixonR, KahnD (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2: 621–631.

56. KormelinkTG, KoendersE, HagemeijerY, OvermarsL, SiezenRJ, et al. (2012) Comparative genome analysis of central nitrogen metabolism and its control by GlnR in the class Bacilli. BMC Genomics 13: 191–206.

57. DoroshchukN, GelfandM, RodionovD (2006) Regulation of nitrogen metabolism in gram-positive bacteria. Mol Biol 40: 829–836.

58. ZhaoD, CurattiL, RubioLM (2007) Evidence for nifU and nifS participation in the biosynthesis of the iron-molybdenum cofactor of nitrogenase. J Biol Chem 282: 37016–37025.

59. JohnsonDC, DeanDR, SmithAD, JohnsonMK (2005) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74: 247–281.

60. HongY, MaY, WuL, MakiM, QinW, et al. (2012) Characterization and analysis of nifH genes from Paenibacillus sabinae T27. Microbiol Res 167: 596–601.

61. HackerJ, CarnielE (2001) Ecological fitness, genomic islands and bacterial pathogenicity. EMBO Rep 2: 376–381.

62. HackerJ, KaperJB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54: 641–679.

63. YoungJPW, CrossmanLC, JohnstonAW, ThomsonNR, GhazouiZF, et al. (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7: R34.

64. Chen JS (2005) Genomic aspects of nitrogen fixation in the Clostridia. Genomes and genomics of nitrogen-fixing organisms: Springer. pp. 13–26.

65. DodsworthJA, LeighJA (2006) Regulation of nitrogenase by 2-oxoglutarate-reversible, direct binding of a PII-like nitrogen sensor protein to dinitrogenase. Proc Natl Acad Sci U S A 103: 9779–9784.

66. DobrindtU, HochhutB, HentschelU, HackerJ (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2: 414–424.

67. HirschAM, McKhannHI, ReddyA, LiaoJ, FangY, et al. (1995) Assessing horizontal transfer of nifHDK genes in eubacteria: nucleotide sequence of nifK from Frankia strain HFPCcI3. Mol Biol Evol 12: 16–27.

68. NakamuraY, ItohT, MatsudaH, GojoboriT (2004) Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat Genet 36: 760–766.

69. FinanTM (2002) Evolving insights: symbiosis islands and horizontal gene transfer. J Bacteriol 184: 2855–2856.

70. SullivanJT, RonsonCW (1998) Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci U S A 95: 5145–5149.

71. Young J (2005) The phylogeny and evolution of nitrogenases. Genomes and genomics of nitrogen-fixing organisms: Springer. pp. 221–241.

72. GalibertF, FinanTM, LongSR, PühlerA, AbolaP, et al. (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293: 668–672.

73. KanekoT, NakamuraY, SatoS, AsamizuE, KatoT, et al. (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA research 7: 331–338.

74. KanekoT, NakamuraY, SatoS, MinamisawaK, UchiumiT, et al. (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA research 9: 189–197.

75. LiR, LiY, KristiansenK, WangJ (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24: 713–714.

76. DelcherAL, BratkeKA, PowersEC, SalzbergSL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23: 673–679.

77. ZhouY, LiangY, LynchKH, DennisJJ, WishartDS (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39: W347–W352.

78. ZhaoY, WuJ, YangJ, SunS, XiaoJ, et al. (2012) PGAP: pan-genomes analysis pipeline. Bioinformatics 28: 416–418.

79. DarlingAC, MauB, BlattnerFR, PernaNT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14: 1394–1403.

80. TamuraK, PetersonD, PetersonN, StecherG, NeiM, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739.

81. RonquistF, TeslenkoM, van der MarkP, AyresDL, DarlingA, et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61: 539–542.

82. ThompsonJD, GibsonT, HigginsDG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics Chapter 2 Unit 2.3. doi: 10.1002/0471250953.bi0203s00

83. CastresanaJ (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17: 540–552.

84. GuindonS, DufayardJ, LefortV, AnisimovaM, HordijkW, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307–321.

85. ShimodairaH, HasegawaM (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17: 1246–1247.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#