#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Kil Peptide of Bacteriophage λ Blocks Cytokinesis via ZipA-Dependent Inhibition of FtsZ Assembly


Bacterial antibiotic resistance is a serious concern, particularly its role in hospital-acquired infection. Viruses that infect bacteria (bacteriophage) can kill their host, and some prevent the bacterial cell from reproducing during that process. Since their discovery, phage have been considered a potential tool against bacterial infection, but little is known regarding how phage-encoded factors may inhibit bacterial cell division. Understanding the interaction between phage factors and the targeted host systems is therefore a critical research goal. Our report focuses on E. coli and λ, a well-studied phage that infects it. λ contains a gene, kil, whose expression prevents E. coli from dividing, causing cells to grow into long filaments that die. Here we report that Kil protein prevents an essential bacterial protein, FtsZ, from properly assembling into the structure needed for cell division. Our data show that Kil can inhibit FtsZ assembly directly in vitro, but that ZipA, another essential cell division protein, enhances its activity on FtsZ in vivo. The results of our study elucidate one way that a phage naturally inhibits bacterial reproduction, which could serve as a target for rational antibiotic design.


Vyšlo v časopise: The Kil Peptide of Bacteriophage λ Blocks Cytokinesis via ZipA-Dependent Inhibition of FtsZ Assembly. PLoS Genet 10(3): e32767. doi:10.1371/journal.pgen.1004217
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004217

Souhrn

Bacterial antibiotic resistance is a serious concern, particularly its role in hospital-acquired infection. Viruses that infect bacteria (bacteriophage) can kill their host, and some prevent the bacterial cell from reproducing during that process. Since their discovery, phage have been considered a potential tool against bacterial infection, but little is known regarding how phage-encoded factors may inhibit bacterial cell division. Understanding the interaction between phage factors and the targeted host systems is therefore a critical research goal. Our report focuses on E. coli and λ, a well-studied phage that infects it. λ contains a gene, kil, whose expression prevents E. coli from dividing, causing cells to grow into long filaments that die. Here we report that Kil protein prevents an essential bacterial protein, FtsZ, from properly assembling into the structure needed for cell division. Our data show that Kil can inhibit FtsZ assembly directly in vitro, but that ZipA, another essential cell division protein, enhances its activity on FtsZ in vivo. The results of our study elucidate one way that a phage naturally inhibits bacterial reproduction, which could serve as a target for rational antibiotic design.


Zdroje

1. WeisbergRA, GallantJA (1967) Dual function of the lambda prophage repressor. J Mol Biol 25: 537–544.

2. Court D, Oppenheim AB (1983) Phage lambda's accessory genes. In: Hendrix RW, Roberts JW, Stahl FW, Weisberg RA, editors. Lambda II. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory. 251–278.

3. GreerH (1975) The kil gene of bacteriophage lambda. Virology 66: 589–604.

4. Daniels D, Schroeder J, Szybalski W, Sanger F, Coulson A, et al.. (1983) Complete annotated lambda sequence. In: Hendrix RW, Roberts JW, Stahl FW, Weisberg RA, editors. Lambda II. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory. 519–676.

5. BahlH, EcholsH, StrausDB, CourtD, CrowlR, et al. (1987) Induction of the heat shock response of E. coli through stabilization of sigma 32 by the phage lambda CIII protein. Genes Dev 1: 57–64.

6. SergueevK, YuD, AustinS, CourtD (2001) Cell toxicity caused by products of the PL operon of bacteriophage lambda. Gene 272: 227–235.

7. ReisingerGR, RietschA, LubitzW, BlasiU (1993) Lambda kil-mediated lysis requires the phage context. Virology 193: 1033–1036.

8. de BoerPAJ (2010) Advances in understanding E. coli cell fission. Curr Opin Microbiol 13: 730–737 doi: 10.1016/j.mib.2010.09.015

9. EricksonHP, AndersonDE, OsawaM (2010) FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev 74: 504–528 doi: 10.1128/MMBR.00021-10

10. HuangKH, Durand-HerediaJ, JanakiramanA (2013) FtsZ ring stability: of bundles, tubules, crosslinks, and curves. J Bacteriol 195: 1859–1868 doi: 10.1128/JB.02157-12

11. EganAJF, VollmerW (2013) The physiology of bacterial cell division. Ann N Y Acad Sci 1277: 8–28 doi: 10.1111/j.1749-6632.2012.06818.x

12. RombergL, LevinPA (2003) Assembly dynamics of the bacterial cell division protein FtsZ: poised at the edge of stability. Annu Rev Microbiol 57: 125–154.

13. LutkenhausJ (2007) Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu Rev Biochem 76: 539–562.

14. ChoH, BernhardtTG (2013) Identification of the SlmA active site responsible for blocking bacterial cytokinetic ring assembly over the chromosome. PLoS Genet 9: e1003304 doi: 10.1371/journal.pgen.1003304

15. ChoH, McManusHR, DoveSL, BernhardtTG (2011) Nucleoid occlusion factor SlmA is a DNA-activated FtsZ polymerization antagonist. Proc Natl Acad Sci U S A 108: 3773–3778 doi: 10.1073/pnas.1018674108

16. TonthatNK, AroldST, PickeringBF, Van DykeMW, LiangS, et al. (2011) Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check. EMBO J 30: 154–164 doi: 10.1038/emboj.2010.288

17. TonthatNK, MilamSL, ChinnamN, WhitfillT, MargolinW, et al. (2013) SlmA forms a higher-order structure on DNA that inhibits cytokinetic Z-ring formation over the nucleoid. Proc Natl Acad Sci U S A 110: 10586–10591 doi: 10.1073/pnas.1221036110

18. BernhardtTG, de BoerPAJ (2005) SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol Cell 18: 555–564.

19. LooseM, Fischer-FriedrichE, HeroldC, KruseK, SchwilleP (2011) Min protein patterns emerge from rapid rebinding and membrane interaction of MinE. Nat Struct Mol Biol 18: 577–583 doi: 10.1038/nsmb.2037

20. ParkK-T, WuW, BattaileKP, LovellS, HolyoakT, et al. (2011) The Min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis. Cell 146: 396–407 doi: 10.1016/j.cell.2011.06.042

21. ParkK-T, WuW, LovellS, LutkenhausJ (2012) Mechanism of the asymmetric activation of the MinD ATPase by MinE. Mol Microbiol 85: 271–281 doi: 10.1111/j.1365-2958.2012.08110.x

22. BiE, LutkenhausJ (1993) Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring. J Bacteriol 175: 1118–1125.

23. ChenY, MilamSL, EricksonHP (2012) SulA inhibits assembly of FtsZ by a simple sequestration mechanism. Biochem 51: 3100–3109 doi: 10.1021/bi201669d

24. HuismanO, D'AriR, GottesmanS (1984) Cell-division control in Escherichia coli: specific induction of the SOS function SfiA protein is sufficient to block septation. Proc Natl Acad Sci U S A 81: 4490–4494.

25. AdamsDW, ErringtonJ (2009) Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7: 642–653 doi: 10.1038/nrmicro2198

26. ConterA, BouchéJP, DassainM (1996) Identification of a new inhibitor of essential division gene ftsZ as the kil gene of defective prophage Rac. J Bacteriol 178: 5100–5104.

27. WaggonerBT, SultanaK, SymondsN, KarlokMA, PatoML (1989) Identification of the bacteriophage Mu kil gene. Virology 173: 378–389.

28. FaubladierM, BouchéJP (1994) Division inhibition gene dicF of Escherichia coli reveals a widespread group of prophage sequences in bacterial genomes. J Bacteriol 176: 1150–1156.

29. de BoerPA, CrossleyRE, RothfieldLI (1990) Central role for the Escherichia coli minC gene product in two different cell division-inhibition systems. Proc Natl Acad Sci U S A 87: 1129–1133.

30. JohnsonJE, LacknerLL, de BoerPAJ (2002) Targeting of (D)MinC/MinD and (D)MinC/DicB complexes to septal rings in Escherichia coli suggests a multistep mechanism for MinC-mediated destruction of nascent FtsZ rings. J Bacteriol 184: 2951–2962.

31. TétartF, BouchéJP (1992) Regulation of the expression of the cell-cycle gene ftsZ by DicF antisense RNA. Division does not require a fixed number of FtsZ molecules. Mol Microbiol 6: 615–620.

32. JafféA, D'AriR, NorrisV (1986) SOS-independent coupling between DNA replication and cell division in Escherichia coli. J Bacteriol 165: 66–71.

33. MaguinE, LutkenhausJ, D'AriR (1986) Reversibility of SOS-associated division inhibition in Escherichia coli. J Bacteriol 166: 733–738.

34. D'AriR, HuismanO (1983) Novel mechanism of cell division inhibition associated with the SOS response in Escherichia coli. J Bacteriol 156: 243–250.

35. WangXD, de BoerPA, RothfieldLI (1991) A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli. EMBO J 10: 3363–3372.

36. DaiK, LutkenhausJ (1992) The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J Bacteriol 174: 6145–6151.

37. WeartRB, LevinPA (2003) Growth rate-dependent regulation of medial FtsZ ring formation. J Bacteriol 185: 2826–2834.

38. LutkenhausJ, AddinallSG (1997) Bacterial cell division and the Z ring. Annu Rev Biochem 66: 93–116.

39. DajkovicA, MukherjeeA, LutkenhausJ (2008) Investigation of regulation of FtsZ assembly by SulA and development of a model for FtsZ polymerization. J Bacteriol 190: 2513–2526 doi: 10.1128/JB.01612-07

40. TruscaD, ScottS, ThompsonC, BramhillD (1998) Bacterial SOS checkpoint protein SulA inhibits polymerization of purified FtsZ cell division protein. J Bacteriol 180: 3946–3953.

41. DajkovicA, LanG, SunSX, WirtzD, LutkenhausJ (2008) MinC spatially controls bacterial cytokinesis by antagonizing the scaffolding function of FtsZ. Curr Biol 18: 235–244 doi: 10.1016/j.cub.2008.01.042

42. HuZ, LutkenhausJ (2000) Analysis of MinC reveals two independent domains involved in interaction with MinD and FtsZ. J Bacteriol 182: 3965–3971.

43. ShenB, LutkenhausJ (2010) Examination of the interaction between FtsZ and MinCN in E. coli suggests how MinC disrupts Z rings. Mol Microbiol 75: 1285–1298 doi: 10.1111/j.1365-2958.2010.07055.x

44. ShiomiD, MargolinW (2007) The C-terminal domain of MinC inhibits assembly of the Z ring in Escherichia coli. J Bacteriol 189: 236–243.

45. LiY, HsinJ, ZhaoL, ChengY, ShangW, et al. (2013) FtsZ protofilaments use a hinge-opening mechanism for constrictive force generation. Science 341: 392–395 doi: 10.1126/science.1239248

46. BiE, LutkenhausJ (1990) Analysis of ftsZ mutations that confer resistance to the cell division inhibitor SulA (SfiA). J Bacteriol 172: 5602–5609.

47. BiE, LutkenhausJ (1990) Interaction between the min locus and ftsZ. J Bacteriol 172: 5610–5616.

48. PichoffS, LutkenhausJ (2001) Escherichia coli division inhibitor MinCD blocks septation by preventing Z-ring formation. J Bacteriol 183: 6630–6635.

49. GeisslerB, ElrahebD, MargolinW (2003) A gain-of-function mutation in ftsA bypasses the requirement for the essential cell division gene zipA in Escherichia coli. Proc Natl Acad Sci U S A 100: 4197–4202.

50. GeisslerB, ShiomiD, MargolinW (2007) The ftsA* gain-of-function allele of Escherichia coli and its effects on the stability and dynamics of the Z ring. Microbiology 153: 814–825.

51. PichoffS, ShenB, SullivanB, LutkenhausJ (2012) FtsA mutants impaired for self-interaction bypass ZipA suggesting a model in which FtsA's self-interaction competes with its ability to recruit downstream division proteins. Mol Microbiol 83: 151–67 doi: 10.1111/j.1365-2958.2011.07923.x

52. GeisslerB, MargolinW (2005) Evidence for functional overlap among multiple bacterial cell division proteins: compensating for the loss of FtsK. Mol Microbiol 58: 596–612.

53. DajkovicA, PichoffS, LutkenhausJ, WirtzD (2010) Cross-linking FtsZ polymers into coherent Z rings. Mol Microbiol 78: 651–668 doi: 10.1111/j.1365-2958.2010.07352.x

54. Gueiros-FilhoFJ, LosickR (2002) A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes Dev 16: 2544–2556.

55. SmallE, MarringtonR, RodgerA, ScottDJ, SloanK, et al. (2007) FtsZ polymer-bundling by the Escherichia coli ZapA orthologue, YgfE, involves a conformational change in bound GTP. J Mol Biol 369: 210–221.

56. HaleCA, RheeAC, de BoerPA (2000) ZipA-induced bundling of FtsZ polymers mediated by an interaction between C-terminal domains. J Bacteriol 182: 5153–5166.

57. KuchibhatlaA, BhattacharyaA, PandaD (2011) ZipA Binds to FtsZ with High Affinity and Enhances the Stability of FtsZ Protofilaments. PLoS ONE 6: e28262 doi: 10.1371/journal.pone.0028262

58. MosyakL, ZhangY, GlasfeldE, HaneyS, StahlM, et al. (2000) The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO J 19: 3179–3191.

59. HaleCA, de BoerPA (1997) Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli. Cell 88: 175–185.

60. GreerH, AusubelFM (1979) Radiochemical identification of the kil gene product of bacteriophage lambda. Virology 95: 577–580.

61. BuskePJ, LevinPA (2012) Extreme C-terminus of the bacterial cytoskeletal protein FtsZ plays a fundamental role in assembly independent of modulatory proteins. J Biol Chem 287 (14) 10945–10957 doi: 10.1074/jbc.M111.330324

62. MukherjeeA, LutkenhausJ (1999) Analysis of FtsZ assembly by light scattering and determination of the role of divalent metal cations. J Bacteriol 181: 823–832.

63. YuXC, MargolinW (1997) Ca2+-mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro. EMBO J 16: 5455–5463.

64. VolpiL, GhisottiD, SironiG (1983) Evidence of cell fragility caused by gene kil following lambda induction. Virology 128: 166–175.

65. JohnsonJE, LacknerLL, HaleCA, de BoerPAJ (2004) ZipA is required for targeting of DMinC/DicB, but not DMinC/MinD, complexes to septal ring assemblies in Escherichia coli. J Bacteriol 186: 2418–2429.

66. HaeusserDP, SchwartzRL, SmithAM, OatesME, LevinPA (2004) EzrA prevents aberrant cell division by modulating assembly of the cytoskeletal protein FtsZ. Mol Microbiol 52: 801–814.

67. KleinP, KanehisaM, DeLisiC (1985) The detection and classification of membrane-spanning proteins. Biochim Biophys Acta 815: 468–476.

68. ChungK-M, HsuH-H, YehH-Y, ChangB-Y (2007) Mechanism of regulation of prokaryotic tubulin-like GTPase FtsZ by membrane protein EzrA. J Biol Chem 282: 14891–14897.

69. KiroR, Molshanski-MorS, YosefI, MilamSL, EricksonHP, et al. (2013) Gene product 0.4 increases bacteriophage T7 competitiveness by inhibiting host cell division. Proc Natl Acad Sci U S A 110: 19549–19554.

70. StewartCR, DeeryWJ, EganESK, MylesB, PettiAA (2013) The product of SPO1 gene 56 inhibits host cell division during infection of Bacillus subtilis by bacteriophage SPO1. Virology 447: 249–253 doi: 10.1016/j.virol.2013.09.005

71. WangX, KimY, MaQ, HongSH, PokusaevaK, et al. (2010) Cryptic prophages help bacteria cope with adverse environments. Nat Commun 1: 147 doi: 10.1038/ncomms1146

72. Ballesteros-PlazaD, HolgueraI, ScheffersD-J, SalasM, Muñoz-EspínD (2013) Phage 29 protein p1 promotes replication by associating with the FtsZ ring of the divisome in Bacillus subtilis. Proc Natl Acad Sci U S A 110: 12313–12318 doi: 10.1073/pnas.1311524110

73. SergueevK, CourtD, ReavesL, AustinS (2002) E. coli cell-cycle regulation by bacteriophage lambda. J Molec Biol 324: 297–307.

74. St-PierreF, EndyD (2008) Determination of cell fate selection during phage lambda infection. Proc Natl Acad Sci U S A 105: 20705–20710 doi: 10.1073/pnas.0808831105

75. SemerjianAV, MalloyDC, PoteeteAR (1989) Genetic structure of the bacteriophage P22 PL operon. J Mol Biol 207: 1–13.

76. BrileyKJr, PrepiakP, DiasMJ, HahnJ, DubnauD (2011) Maf acts downstream of ComGA to arrest cell division in competent cells of B. subtilis. Mol Microbiol 81: 23–39 doi: 10.1111/j.1365-2958.2011.07695.x

77. SawitzkeJA, ThomasonLC, CostantinoN, BubunenkoM, DattaS, et al. (2007) Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. Methods Enzymol 421: 171–199.

78. ThomasonL, CourtDL, BubunenkoM, CostantinoN, WilsonH, et al. (2007) Recombineering: genetic engineering in bacteria using homologous recombination. Curr Protoc Mol Biol 1.16.1–1.16.24.

79. StuddertCA, ParkinsonJS (2005) Insights into the organization and dynamics of bacterial chemoreceptor clusters through in vivo crosslinking studies. Proc Natl Acad Sci U S A 102: 15623–15628.

80. GuzmanLM, BelinD, CarsonMJ, BeckwithJ (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177: 4121–4130.

81. PowellBS, RivasMP, CourtDL, NakamuraY, TurnboughCLJr (1994) Rapid confirmation of single copy lambda prophage integration by PCR. Nucleic Acids Res 22: 5765–5766.

82. ShiomiD, MargolinW (2007) Dimerization or oligomerization of the actin-like FtsA protein enhances the integrity of the cytokinetic Z ring. Mol Microbiol 66: 1396–1415.

83. SawitzkeJA, CostantinoN, LiXT, ThomasonLC, BubunenkoM, et al. (2011) Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering. J Mol Biol 407: 45–59 doi: 10.1016/j.jmb.2011.01.030

84. UlbrandtND, NewittJA, BernsteinHD (1997) The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell 88: 187–196.

85. WilsonDS, KeefeAD (2000) Random mutagenesis by PCR. Curr Protoc Mol Biol Unit 8.3. doi: 10.1002/0471142727.mb0803s51

86. Levin PA (2001) Light microscopy techniques for bacterial cell biology. In: Sansonetti P, Zychlinsky A, editors. Methods in Microbiology 31: Molecular Cellular Microbiology. Academic Press Ltd., London. 115–132.

87. YuXC, TranAH, SunQ, MargolinW (1998) Localization of cell division protein FtsK to the Escherichia coli septum and identification of a potential N-terminal targeting domain. J Bacteriol 180: 1296–1304.

88. VischerN, WoldringhCL (1994) Object-Image: an interactive image analysis program using structured point collection. Binary 6: 160–166.

89. SchneiderCA, RasbandWS, EliceiriKW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675.

90. BusiekKK, ErasoJM, WangY, MargolinW (2012) The early divisome protein FtsA interacts directly through its 1c subdomain with the cytoplasmic domain of the late divisome protein FtsN. J Bacteriol 194: 1989–2000 doi: 10.1128/JB.06683-11

91. StudierFW, MoffattBA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189: 113–130.

92. OlivaMA, TrambaioloD, LöweJ (2007) Structural insights into the conformational variability of FtsZ. J Mol Biol 373: 1229–1242.

93. YuD, EllisHM, LeeEC, JenkinsNA, CopelandNG, et al. (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97: 5978–5983.

94. BabaT, AraT, HasegawaM, TakaiY, OkumuraY, et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 2006.0008.

95. SunQ, MargolinW (2001) Influence of the nucleoid on placement of FtsZ and MinE rings in Escherichia coli. J Bacteriol 183: 1413–1422.

96. ChanW, CostantinoN, LiR, LeeSC, SuQ, et al. (2007) A recombineering based approach for high-throughput conditional knockout targeting vector construction. Nucleic Acids Res 35: e64.

97. BeallB, LoweM, LutkenhausJ (1988) Cloning and characterization of Bacillus subtilis homologs of Escherichia coli cell division genes ftsZ and ftsA. J Bacteriol 170: 4855–4864.

98. ThanedarS, MargolinW (2004) FtsZ exhibits rapid movement and oscillation waves in helix-like patterns in Escherichia coli. Curr Biol 14: 1167–1173.

99. WeissDS, ChenJC, GhigoJM, BoydD, BeckwithJ (1999) Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL. J Bacteriol 181: 508–520.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#