#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Inactivation of Fructose-1,6-Bisphosphate Aldolase Prevents Optimal Co-catabolism of Glycolytic and Gluconeogenic Carbon Substrates in


The development of new chemotherapies targeting Mycobacterium tuberculosis (Mtb) will benefit from genetic evaluation of potential drug targets and a better understanding of the pathways required by Mtb to establish and maintain chronic infections. We employed a genetic approach to investigate the essentiality of fructose-1,6-bisphosphate aldolase (FBA) for growth and survival of Mtb in vitro and in mice. A conditional fba mutant revealed that Mtb requires FBA for growth in the acute phase and for survival in the chronic phase of mouse infections. In vitro essentiality of fba was strictly condition-dependent. An FBA deletion mutant (Δfba) required a balanced combination of carbon substrates entering metabolism above and below the FBA-catalyzed reaction for growth and died in media with single carbon sources and in mouse lungs. Death of Δfba in vitro was associated with the perturbation of intracellular metabolites. These studies highlight how a conditional fba mutant helped identify conditions in which FBA is dispensable for growth of Mtb, evaluate FBA as a potential target for eliminating persistent bacilli and offer insight into metabolic regulation of carbon co-catabolism in Mtb.


Vyšlo v časopise: Inactivation of Fructose-1,6-Bisphosphate Aldolase Prevents Optimal Co-catabolism of Glycolytic and Gluconeogenic Carbon Substrates in. PLoS Pathog 10(5): e32767. doi:10.1371/journal.ppat.1004144
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004144

Souhrn

The development of new chemotherapies targeting Mycobacterium tuberculosis (Mtb) will benefit from genetic evaluation of potential drug targets and a better understanding of the pathways required by Mtb to establish and maintain chronic infections. We employed a genetic approach to investigate the essentiality of fructose-1,6-bisphosphate aldolase (FBA) for growth and survival of Mtb in vitro and in mice. A conditional fba mutant revealed that Mtb requires FBA for growth in the acute phase and for survival in the chronic phase of mouse infections. In vitro essentiality of fba was strictly condition-dependent. An FBA deletion mutant (Δfba) required a balanced combination of carbon substrates entering metabolism above and below the FBA-catalyzed reaction for growth and died in media with single carbon sources and in mouse lungs. Death of Δfba in vitro was associated with the perturbation of intracellular metabolites. These studies highlight how a conditional fba mutant helped identify conditions in which FBA is dispensable for growth of Mtb, evaluate FBA as a potential target for eliminating persistent bacilli and offer insight into metabolic regulation of carbon co-catabolism in Mtb.


Zdroje

1. EhrtS, RheeK (2013) Mycobacterium tuberculosis metabolism and host interaction: mysteries and paradoxes. Curr Top Microbiol Immunol 374: 163–188 doi:__10.1007/82_2012_299

2. LinPL, RodgersM, SmithL, BigbeeM, MyersA, et al. (2009) Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun 77: 4631–4642 doi:10.1128/IAI.00592-09

3. BarryCE, BoshoffHI, DartoisV, DickT, EhrtS, et al. (2009) The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Micro 7: 845–855 doi:10.1038/nrmicro2236

4. de CarvalhoLPS, FischerSM, MarreroJ, NathanC, EhrtS, et al. (2010) Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chemistry & Biology 17: 1122–1131 doi:10.1016/j.chembiol.2010.08.009

5. BesteDJV, BondeB, HawkinsN, WardJL, BealeMH, et al. (2011) C Metabolic Flux Analysis Identifies an Unusual Route for Pyruvate Dissimilation in Mycobacteria which Requires Isocitrate Lyase and Carbon Dioxide Fixation. PLoS Pathog 7: e1002091 doi:10.1371/journal.ppat.1002091

6. BesteDJV, NöhK, NiedenführS, MendumTA, HawkinsND, et al. (2013) 13C-Flux Spectral Analysis of Host-Pathogen Metabolism Reveals a Mixed Diet for Intracellular Mycobacterium tuberculosis. Chemistry & Biology 20: 1012–1021 doi:10.1016/j.chembiol.2013.06.012

7. BlochH, SegalW (1956) Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. J Bacteriol 72: 132–141.

8. Muñoz-ElíasE, McKinneyJ (2005) Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11: 638–644.

9. PandeyAK, SassettiCM (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105: 4376–4380 doi:10.1073/pnas.0711159105

10. MarreroJ, RheeKY, SchnappingerD, PetheK, EhrtS (2010) Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci USA 107: 9819–9824 doi:10.1073/pnas.1000715107

11. MarreroJ, TrujilloC, RheeKY, EhrtS (2013) Glucose Phosphorylation Is Required for Mycobacterium tuberculosis Persistence in Mice. PLoS Pathog 9: e1003116 doi:10.1371/journal.ppat.1003116.s006

12. KalscheuerR, WeinrickB, VeeraraghavanU, BesraGS, JacobsWR (2010) Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 107: 21761–21766 doi:10.1073/pnas.1014642108

13. WatanabeS, ZimmermannM, GoodwinMB, SauerU, BarryCE, et al. (2011) Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog 7: e1002287 doi:10.1371/journal.ppat.1002287

14. McKinneyJ, zu BentrupK, Muñoz-ElíasE, MiczakA, ChenB, et al. (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406: 735–738.

15. BlumenthalA, TrujilloC, EhrtS, SchnappingerD (2010) Simultaneous analysis of multiple Mycobacterium tuberculosis knockdown mutants in vitro and in vivo. PLoS ONE 5: e15667 doi:10.1371/journal.pone.0015667

16. KalscheuerR, SysonK, VeeraraghavanU, WeinrickB, BiermannKE, et al. (2010) Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an alpha-glucan pathway. Nat Chem Biol 6: 376–384 doi:10.1038/nchembio.340

17. VenugopalA, BrykR, ShiS, RheeK, RathP, et al. (2011) Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes. Cell Host Microbe 9: 21–31 doi:10.1016/j.chom.2010.12.004

18. PeganS, RuksereeK, FranzblauS, MesecarA (2009) Structural basis for catalysis of a tetrameric class IIa fructose 1, 6-bisphosphate aldolase from Mycobacterium tuberculosis. J Mol Biol 386: 1038–1053.

19. la Paz Santangelo deM, GestPM, GuerinME, CoinçonM, PhamH, et al. (2011) Glycolytic and non-glycolytic functions of Mycobacterium tuberculosis fructose-1,6-bisphosphate aldolase, an essential enzyme produced by replicating and non-replicating bacilli. J Biol Chem 286: 40219–40231 doi:10.1074/jbc.M111.259440

20. LabbéG, KrismanichAP, de GrootS, RasmussonT, ShangM, et al. (2012) Development of metal-chelating inhibitors for the Class II fructose 1,6-bisphosphate (FBP) aldolase. J Inorg Biochem 112: 49–58 doi:10.1016/j.jinorgbio.2012.02.032

21. PeganSD, RuksereeK, CapodagliGC, BakerEA, KrasnykhO, et al. (2013) Active Site Loop Dynamics of a Class IIa Fructose 1,6-Bisphosphate Aldolase from Mycobacterium tuberculosis. Biochemistry 52: 912–925 doi:10.1021/bi300928u

22. CapodagliGC, SedhomWG, JacksonM, AhrendtKA, PeganSD (2014) A Noncompetitive Inhibitor for Mycobacterium tuberculosis's Class IIa Fructose 1,6-Bisphosphate Aldolase. Biochemistry 53: 202–213 doi:10.1021/bi401022b

23. GriffinJE, GawronskiJD, DejesusMA, IoergerTR, AkerleyBJ, et al. (2011) High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 7: e1002251 doi:10.1371/journal.ppat.1002251

24. RosenkrandsI, SlaydenR, CrawfordJ, AagaardC, BarryCIII, et al. (2002) Hypoxic response of Mycobacterium tuberculosis studied by metabolic labeling and proteome analysis of cellular and extracellular proteins. J Bacteriol 184: 3485.

25. RamsaywakPC, LabbéG, SiemannS, DmitrienkoGI, GuillemetteJG (2004) Molecular cloning, expression, purification, and characterization of fructose 1,6-bisphosphate aldolase from Mycobacterium tuberculosis–a novel Class II A tetramer. Protein Expr Purif 37: 220–228 doi:10.1016/j.pep.2004.05.011

26. ColeST, BroschR, ParkhillJ, GarnierT, ChurcherC, et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537–544.

27. BaiNJ, PaiMR, MurthyPS, VenkitasubramanianTA (1974) Effect of oxygen tension on the aldolases of Mycobacterium tuberculosis H37Rv. FEBS Lett 45: 68–70.

28. BaiN, PaiM, MurthyP, VenkitasubramanianT (1982) Fructose-bisphosphate aldolases from mycobacteria. Methods Enzymol 90: 241–250.

29. DaherR, TherisodM (2010) Highly Selective Inhibitors of Class II Microbial Fructose Bis-phosphate Aldolases. ACS Medicinal Chemistry Letters 1: 101–104 doi:10.1021/ml100017c

30. DaherR, CoinçonM, FonvielleM, GestPM, GuerinME, et al. (2010) Rational design, synthesis, and evaluation of new selective inhibitors of microbial class II (zinc dependent) fructose bis-phosphate aldolases. J Med Chem 53: 7836–7842 doi:10.1021/jm1009814

31. KimJ-H, O'BrienKM, SharmaR, BoshoffHIM, RehrenG, et al. (2013) A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence. Proc Natl Acad Sci USA 110: 19095–19100 doi:10.1073/pnas.1315860110

32. EhrtS, GuoXV, HickeyCM, RyouM, MonteleoneM, et al. (2005) Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor. Nucleic Acids Res 33: e21 doi:10.1093/nar/gni013

33. GriffinJE, PandeyAK, GilmoreSA, MizrahiV, MckinneyJD, et al. (2012) Cholesterol Catabolism by Mycobacterium tuberculosis Requires Transcriptional and Metabolic Adaptations. Chemistry & Biology 19: 218–227 doi:10.1016/j.chembiol.2011.12.016

34. Kovárová-KovarK, EgliT (1998) Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 62: 646–666.

35. GörkeB, StülkeJ (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Micro 6: 613–624 doi:10.1038/nrmicro1932

36. BöckA, NeidhardtFC (1966) Isolation of a Mutant of Escherichia coli with a Temperature-sensitive Fructose-1,6-Diphosphate Aldolase Activity. J Bacteriol 92: 464–469.

37. BöckA, NeidhardtFC (1966) Properties of a Mutant of Escherichia coli with a Temperature-sensitive Fructose-1,6-Diphosphate Aldolase. J Bacteriol 92: 470–476.

38. SchreyerR, BöckA (1973) Phenotypic suppression of a fructose-1,6-diphosphate aldolase mutation in Escherichia coli. J Bacteriol 115: 268–276.

39. WeiJ-R, KrishnamoorthyV, MurphyK, KimJ-H, SchnappingerD, et al. (2011) Depletion of antibiotic targets has widely varying effects on growth. Proc Natl Acad Sci USA 108: 4176–4181 doi:10.1073/pnas.1018301108

40. Dartois V (2010) Immunopathology of tuberculosis disease across species. In: Leong FJ, Dartois V, Dick T, editors. A Color Atlas of Comparative Pathology of Pulmonary Tuberculosis. CRC Press.

41. PeyronP, VaubourgeixJ, PoquetY, LevillainF, BotanchC, et al. (2008) Foamy Macrophages from Tuberculous Patients' Granulomas Constitute a Nutrient-Rich Reservoir for M. tuberculosis Persistence. PLoS Pathog 4: e1000204 doi:10.1371/journal.ppat.1000204.t003

42. KimM-J, WainwrightHC, LocketzM, BekkerL-G, WaltherGB, et al. (2010) Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2: 258–274 doi:10.1002/emmm.201000079

43. EohH, RheeKY (2013) Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 110: 6554–6559 doi:10.1073/pnas.1219375110

44. VandalOH, PieriniLM, SchnappingerD, NathanCF, EhrtS (2008) A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nat Med 14: 849–854 doi:10.1038/nm.1795

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#