#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Contribution of Viral Genotype to Plasma Viral Set-Point in HIV Infection


HIV viral load, the amount of virus in the blood, is an important predictor of rate of CD4+ cell decline, time to AIDS and onwards transmission. Plasma viral load is influenced by many environmental and host factors, but the contribution of the viral genome is not yet clear. We have adapted a method from quantitative genetics which considers the viral phylogeny as a pedigree, permitting analysis of large cohort-derived datasets for the first time. We found the viral genome contributes significantly to the level of the set point viral load, but only determines about 6% of the variation in this property in this population. Our study also suggests that the change over time in mean plasma viral load described in some recent studies has not been due to a change in the component of viral load that is contributed by viral genotype.


Vyšlo v časopise: The Contribution of Viral Genotype to Plasma Viral Set-Point in HIV Infection. PLoS Pathog 10(5): e32767. doi:10.1371/journal.ppat.1004112
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004112

Souhrn

HIV viral load, the amount of virus in the blood, is an important predictor of rate of CD4+ cell decline, time to AIDS and onwards transmission. Plasma viral load is influenced by many environmental and host factors, but the contribution of the viral genome is not yet clear. We have adapted a method from quantitative genetics which considers the viral phylogeny as a pedigree, permitting analysis of large cohort-derived datasets for the first time. We found the viral genome contributes significantly to the level of the set point viral load, but only determines about 6% of the variation in this property in this population. Our study also suggests that the change over time in mean plasma viral load described in some recent studies has not been due to a change in the component of viral load that is contributed by viral genotype.


Zdroje

1. MellorsJW, RinaldoCR, GuptaP, WhiteRM, ToddJA, et al. (1996) Prognosis in HIV-1 Infection Predicted by the Quantity of Virus in Plasma. Science 272: 1167–1170 doi:10.1126/science.272.5265.1167

2. FraserC, HollingsworthTD, ChapmanR, de WolfF, HanageWP (2007) Variation in HIV-1 set-point viral load: Epidemiological analysis and an evolutionary hypothesis. Proceedings of the National Academy of Sciences 104: 17441–17446 doi:10.1073/pnas.0708559104

3. LangfordSE, AnanworanichJ, CooperDA (2007) Predictors of disease progression in HIV infection: a review. AIDS Res Ther 4: 11 doi:10.1186/1742-6405-4-11

4. QuinnTC, WawerMJ, SewankamboN, SerwaddaD, LiC, et al. (2000) Viral Load and Heterosexual Transmission of Human Immunodeficiency Virus Type 1. N Engl J Med 342: 921–929 doi:10.1056/NEJM200003303421303

5. FideliUS, AllenSA, MusondaR, TraskS, HahnBH, et al. (2001) Virologic and immunologic determinants of heterosexual transmission of human immunodeficiency virus type 1 in Africa. AIDS Res Hum Retroviruses 17: 901–910 doi:10.1089/088922201750290023

6. WawerMJ, GrayRH, SewankamboNK, SerwaddaD, LiX, et al. (2005) Rates of HIV-1 Transmission Per Coital Act, by Stage of HIV-1 Infection, in Rakai, Uganda. J Infect Dis 191: 1403–1409 doi:10.1086/429411

7. SteelCM, BeatsonD, CuthbertRJG, MorrisonH, LudlamCA, et al. (1988) HLA Haplotype A1 B8 DR3 as a Risk Factor for HIV-Related Disease. The Lancet 331: 1185–1188 doi:10.1016/S0140-6736(88)92009-0

8. KaslowRA, vanRadenM, FriedmanH, DuquesnoyR, MarrariM, et al. (1990) A1, Cw7, B8, DR3 HLA antigen combination associated with rapid decline of T-helper lymphocytes in HIV-1 infection: A report from the Multicenter AIDS Cohort Study. The Lancet 335: 927–930 doi:10.1016/0140-6736(90)90995-H

9. O'BrienSJ, NelsonGW (2004) Human genes that limit AIDS. Nat Genet 36: 565–574 doi:10.1038/ng1369

10. TangJ, TangS, LobashevskyE, ZuluI, AldrovandiG, et al. (2004) HLA allele sharing and HIV type 1 viremia in seroconverting Zambians with known transmitting partners. AIDS Res Hum Retroviruses 20: 19–25 doi:10.1089/088922204322749468

11. FellayJ, GeD, ShiannaKV, ColomboS, LedergerberB, et al. (2009) Common Genetic Variation and the Control of HIV-1 in Humans. PLoS Genet 5: e1000791 doi:10.1371/journal.pgen.1000791

12. SalgadoM, BrennanT, O'ConnellK, BaileyJ, RayS, et al. (2010) Evolution of the HIV-1 nef gene in HLA-B*57 Positive Elite Suppressors. Retrovirology 7: 94 doi:10.1186/1742-4690-7-94

13. HuangY, PaxtonWA, WolinskySM, NeumannAU, ZhangL, et al. (1996) The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 2: 1240–1243 doi:10.1038/nm1196-1240

14. SmithMW, DeanM, CarringtonM, WinklerC, HuttleyGA, et al. (1997) Contrasting Genetic Influence of CCR2 and CCR5 Variants on HIV-1 Infection and Disease Progression. Science 277: 959–965 doi:10.1126/science.277.5328.959

15. Pido-LopezJ, WhittallT, WangY, BergmeierLA, BabaahmadyK, et al. (2007) Stimulation of Cell Surface CCR5 and CD40 Molecules by Their Ligands or by HSP70 Up-Regulates APOBEC3G Expression in CD4+ T Cells and Dendritic Cells. J Immunol 178: 1671–1679.

16. ÅsjöB, AlbertJ, KarlssonA, Morfeldt-MånsonL, BiberfeldG, et al. (1986) Replicative capacity of human immunodeficiency virus from patients with varying severity of HIV infection. The Lancet 328: 660–662 doi:10.1016/S0140-6736(86)90169-8

17. FenyoEM, Morfeldt MansonL, ChiodiF, LindB, von GegerfeltA, et al. (1988) Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates. JVirol 62: 4414–4419.

18. FioreJR, CalabroML, AngaranoG, De RossiA, FicoC, et al. (1990) HIV-1 variability and progression to AIDS: a longitudinal study. J Med Virol 32: 252–256.

19. HutchinsonCM, WilsonC, ReichartCA, MarsigliaVC, ZenilmanJM, et al. (1991) CD4 Lymphocyte Concentrations in Patients With Newly Identified HIV Infection Attending STD Clinics: Potential Impact on Publicly Funded Health Care Resources. JAMA 266: 253–256 doi:10.1001/jama.1991.03470020079036

20. WeissPJ, BrodineSK, GoforthRR, KennedyCA, WallaceMR, et al. (1992) Initial Low CD4 Lymphocyte Counts in Recent Human Immunodeficiency Virus Infection and Lack of Association with Identified Coinfections. The Journal of Infectious Diseases 166: 1149–1153.

21. GorhamED, GarlandFC, MayersDL, GoforthRR, BrodineSK, et al. (1993) CD4 Lymphocyte Counts Within 24 Months of Human Immunodeficiency Virus Seroconversion: Findings in the US Navy and Marine Corps. Arch Intern Med 153: 869–876 doi:10.1001/archinte.1993.00410070055008

22. HolmbergSD, ConleyLJ, LubySP, CohnS, WongLC, et al. (1995) Recent Infection with Human Immunodeficiency Virus and Possible Rapid Loss of CD4 T Lymphocytes. JAIDS Journal of Acquired Immune Deficiency Syndromes 9: 291–296.

23. VeugelersPJ, PageKA, TindallB, SchechterMT, MossAR, et al. (1994) Determinants of HIV Disease Progression among Homosexual Men Registered in the Tricontinental Seroconverter Study. American Journal of Epidemiology 140: 747–758.

24. O'BrienTR, HooverDR, RosenbergPS, ChenB, DetelsR, et al. (1995) Evalution of Secular Trends in CD4+ Lymphocyte Loss among Human Immunodeficiency Virus Type 1 (HIV-1)-infected Men with Known Dates of Seroconversion. American Journal of Epidemiology 142: 636–642.

25. GalaiN, LepriAC, VlahovD, PezzottiP, SiniccoA, et al. (1996) Temporal Trends of Initial CD4 Cell Counts Following Human Immunodeficiency Virus Seroconversion in Italy, 1985–1992. American Journal of Epidemiology 143: 278–282.

26. KeetIPM, VeugelersPJ, KootM, de WeerdMH, RoosMTL, et al. (1996) Temporal trends of the natural history of HIV-1 infection following seroconversion between 1984 and 1993. AIDS 10: 1601–1602.

27. CarréN, PrinsM, MeyerL, BrettleRP, RobertsonJR, et al. (1997) Has the rate of progression to AIDS changed in recent years? AIDS 11: 1611–1618.

28. SiniccoA, ForaR, RaiteriR, SciandraM, BechisG, et al. (1997) Is the clinical course of HIV-1 changing? Cohort study. BMJ 314: 1232–1237.

29. VanhemsP, LambertJ, GuerraM, HirschelB, AllardR (1999) Association between the rate of CD4+ T cell decrease and the year of human immunodeficiency virus (HIV) type 1 seroconversion among persons enrolled in the Swiss HIV cohort study. J Infect Dis 180: 1803–1808 doi:10.1086/315110

30. Concerted Action on SeroConversion to AIDS and Death in Europe (2000) Time from HIV-1 seroconversion to AIDS and death before widespread use of highly-active antiretroviral therapy: a collaborative re-analysis. The Lancet 355: 1131–1137 doi:doi: DOI: 10.1016/S0140-6736(00)02061-4

31. CASCADE Collaboration (2003) Differences in CD4 cell counts at seroconversion and decline among 5739 HIV-1-infected individuals with well-estimated dates of seroconversion. J Acquir Immune Defic Syndr 34: 76–83.

32. DorrucciM, PhillipsAN, LongoB, RezzaG (2005) The Italian Seroconversion Study (2005) Changes over time in post-seroconversion CD4 cell counts in the Italian HIV-Seroconversion Study: 1985–2002. AIDS 19: 331–335.

33. MüllerV, LedergerberB, PerrinL, KlimkaitT, FurrerH, et al. (2006) Stable virulence levels in the HIV epidemic of Switzerland over two decades. AIDS 20: 889–894.

34. Crum-CianfloneN, EberlyL, ZhangY, GanesanA, WeintrobA, et al. (2009) Is HIV Becoming More Virulent? Initial CD4 Cell Counts among HIV Seroconverters During the Course of the HIV Epidemic: 1985–2007. Clin Infect Dis 48: 1285–1292 doi:10.1086/597777

35. MüllerV, MaggioloF, SuterF, LadisaN, De LucaA, et al. (2009) Increasing Clinical Virulence in Two Decades of the Italian HIV Epidemic. PLoS Pathog 5: e1000454 doi:10.1371/journal.ppat.1000454

36. DorrucciM, RezzaG, PorterK, PhillipsA (2007) Temporal Trends in Postseroconversion CD4 Cell Count and HIV Load: The Concerted Action on Seroconversion to AIDS and Death in Europe Collaboration, 1985–2002. The Journal of Infectious Diseases 195: 525–534 doi:10.1086/510911

37. HerbeckJT, MüllerV, MaustBS, LedergerberB, TortiC, et al. (2012) Is the virulence of HIV changing? A meta-analysis of trends in prognostic markers of HIV disease progression and transmission. AIDS 26: 193–205 doi:10.1097/QAD.0b013e32834db418

38. Martinez-PicadoJ, MartínezMA (2008) HIV-1 reverse transcriptase inhibitor resistance mutations and fitness: A view from the clinic and ex vivo. Virus Research 134: 104–123 doi:10.1016/j.virusres.2007.12.021

39. FennerF, ChapplePJ (1965) Evolutionary changes in myxoma virus in Britain: An examination of 222 in naturally occurring strains obtained from 80 counties during the period October–November 1962. Journal of Hygiene 63: 175–185 doi:10.1017/S0022172400045083

40. AndersonRM, MayRM (1979) Population biology of infectious diseases: Part I. Nature 280: 361–367 doi:10.1038/280361a0

41. MayRM, AndersonRM (1983) Epidemiology and Genetics in the Coevolution of Parasites and Hosts. Proceedings of the Royal Society of London Series B, Biological Sciences 219: 281–313.

42. KorberB, MuldoonM, TheilerJ, GaoF, GuptaR, et al. (2000) Timing the ancestor of the HIV-1 pandemic strains. Science 288: 1789–1796.

43. WorobeyM, GemmelM, TeuwenDE, HaselkornT, KunstmanK, et al. (2008) Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature 455: 661–664 doi:10.1038/nature07390

44. KankiPJ, HamelDJ, SankaléJ, HsiehC, ThiorI, et al. (1999) Human Immunodeficiency Virus Type 1 Subtypes Differ in Disease Progression. The Journal of Infectious Diseases 179: 68–73 doi:10.1086/314557

45. KaleebuP, RossA, MorganD, YirrellD, OramJ, et al. (2001) Relationship between HIV-1 Env subtypes A and D and disease progression in a rural Ugandan cohort. AIDS 15: 293–299.

46. KiwanukaN, LaeyendeckerO, RobbM, KigoziG, ArroyoM, et al. (2008) Effect of human immunodeficiency virus Type 1 (HIV-1) subtype on disease progression in persons from Rakai, Uganda, with incident HIV-1 infection. J Infect Dis 197: 707–713 doi:10.1086/527416

47. Van der KuylAC, JurriaansS, PollakisG, BakkerM, CornelissenM (2010) HIV RNA levels in transmission sources only weakly predict plasma viral load in recipients. AIDS 24: 1607–1608 doi:10.1097/QAD.0b013e32833b318f

48. HechtFM, HartogensisW, BraggL, BacchettiP, AtchisonR, et al. (2010) HIV RNA level in early infection is predicted by viral load in the transmission source. AIDS 24: 941–945 doi:10.1097/QAD.0b013e328337b12e

49. HollingsworthTD, LaeyendeckerO, ShirreffG, DonnellyCA, SerwaddaD, et al. (2010) HIV-1 Transmitting Couples Have Similar Viral Load Set-Points in Rakai, Uganda. PLoS Pathog 6: e1000876 doi:10.1371/journal.ppat.1000876

50. AlizonS, von WylV, StadlerT, KouyosRD, YerlyS, et al. (2010) Phylogenetic Approach Reveals That Virus Genotype Largely Determines HIV Set-Point Viral Load. PLoS Pathog 6: e1001123 doi:10.1371/journal.ppat.1001123

51. LynchM (1991) Methods for the Analysis of Comparative Data in Evolutionary Biology. Evolution 45: 1065–1080.

52. PagelM (1999) Inferring the historical patterns of biological evolution. Nature 401: 877–884 doi:10.1038/44766

53. HousworthEA, MartinsEP, LynchM (2004) The phylogenetic mixed model. Am Nat 163: 84–96 doi:10.1086/380570

54. PattersonHD, ThompsonR (1971) Recovery of Inter-Block Information When Block Sizes Are Unequal. Biometrika 58: 545–554 doi:10.1093/biomet/58.3.545

55. ThompsonR, BrotherstoneS, WhiteIMS, ThompsonR, BrotherstoneS, et al. (2005) Estimation of Quantitative Genetic Parameters. Phil Trans R Soc B 360: 1469–1477 doi:10.1098/rstb.2005.1676

56. HadfieldJD, NakagawaS (2010) General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. Journal of Evolutionary Biology 23: 494–508 doi:10.1111/j.1420-9101.2009.01915.x

57. Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2009) ASReml User Guide Release 3.0. Available: www.vsni.co.uk.

58. HendersonCR (1976) A Simple Method for Computing the Inverse of a Numerator Relationship Matrix Used in Prediction of Breeding Values. Biometrics 32: 69–83 doi:10.2307/2529339

59. FelsensteinJ (1985) Phylogenies and the Comparative Method. AmNat 125: 1–15.

60. HansenTF, MartinsEP (1996) Translating Between Microevolutionary Process and Macroevolutionary Patterns: The Correlation Structure of Interspecific Data. Evolution 50: 1404–1417 doi:10.2307/2410878

61. Davis TA (2006) Direct Methods for Sparse Linear Systems. SIAM. 229 p.

62. FreckletonRP (2012) Fast likelihood calculations for comparative analyses. Methods in Ecology and Evolution 3: 940–947 doi:10.1111/j.2041-210X.2012.00220.x

63. Leigh BrownAJ, LycettSJ, WeinertL, HughesGJ, FearnhillE, et al. (2011) Transmission Network Parameters Estimated From HIV Sequences for a Nationwide Epidemic. J Infect Dis 204: 1463–1469 doi:10.1093/infdis/jir550

64. The UK Collaborative HIV Cohort Steering Committee (2004) The creation of a large UK-based multicentre cohort of HIV-infected individuals: The UK Collaborative HIV Cohort (UK CHIC) Study. HIV Medicine 5: 115–124 doi:10.1111/j.1468-1293.2004.00197.x

65. StamatakisA (2006) RAxML-VI-HPC: Maximum Likelihood-Based Phylogenetic Analyses with Thousands of Taxa and Mixed Models. Bioinformatics 22: 2688–2690 doi:10.1093/bioinformatics/btl446

66. StamatakisA, BlagojevicF, NikolopoulosD, AntonopoulosC (2007) Exploring New Search Algorithms and Hardware for Phylogenetics: RAxML Meets the IBM Cell. The Journal of VLSI Signal Processing 48: 271–286 doi:10.1007/s11265-007-0067-4

67. DrummondAJ, SuchardMA, XieD, RambautA (2012) Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29: 1969–1973 doi:10.1093/molbev/mss075

68. R Development Core Team (2011) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available: http://www.R-project.org.

69. HadfieldJD (2010) MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package. Journal of Statistical Software 33: 1–22.

70. HuéS, PillayD, ClewleyJP, PybusOG (2005) Genetic analysis reveals the complex structure of HIV-1 transmission within defined risk groups. Proc Natl Acad Sci USA 102: 4425–4429.

71. O'BrienTR, BlattnerWA, WatersD, EysterM, HilgartnerMW, et al. (1996) Serum HIV-1 RNA Levels and Time to Development of AIDS in the Multicenter Hemophilia Cohort Study. JAMA 276: 105–110 doi:10.1001/jama.1996.03540020027025

72. NoguerasM, NavarroG, AntónE, SalaM, CervantesM, et al. (2006) Epidemiological and clinical features, response to HAART, and survival in HIV-infected patients diagnosed at the age of 50 or more. BMC Infectious Diseases 6: 159 doi:10.1186/1471-2334-6-159

73. FarzadeganH, HooverDR, AstemborskiJ, LylesCM, MargolickJB, et al. (1998) Sex differences in HIV-1 viral load and progression to AIDS. The Lancet 352: 1510–1514 doi:10.1016/S0140-6736(98)02372-1

74. SterlingTR, LylesCM, VlahovD, AstemborskiJ, MargolickJB, et al. (1999) Sex Differences in Longitudinal Human Immunodeficiency Virus Type 1 RNA Levels among Seroconverters. J Infect Dis 180: 666–672 doi:10.1086/314967

75. GandhiM, BacchettiP, MiottiP, QuinnTC, VeroneseF, et al. (2002) Does Patient Sex Affect Human Immunodeficiency Virus Levels? Clin Infect Dis 35: 313–322 doi:10.1086/341249

76. MüllerV, von WylV, YerlyS, BöniJ, KlimkaitT, et al. (2009) African descent is associated with slower CD4 cell count decline in treatment-naive patients of the Swiss HIV Cohort Study. AIDS 23: 1269–1276 doi:10.1097/QAD.0b013e32832d4096

77. BrownAE, MaloneJD, ZhouSYJ, LaneJR, HawkesCA (1997) Human Immunodeficiency Virus RNA Levels in US Adults: A Comparison Based upon Race and Ethnicity. J Infect Dis 176: 794–797 doi:10.1086/517304

78. SwindellsS, CobosDG, LeeN, LienEA, FitzgeraldAP, et al. (2002) Racial/ethnic differences in CD4 T cell count and viral load at presentation for medical care and in follow-up after HIV-1 infection. AIDS 16: 1832–1834.

79. BoydA, MuradS, O'SheaS, De RuiterA, WatsonC, et al. (2005) Ethnic differences in stage of presentation of adults newly diagnosed with HIV-1 infection in south London. HIV Medicine 6: 59–65 doi:10.1111/j.1468-1293.2005.00267.x

80. Health Protection Agency (2011) HIV in the United Kingdom: 2011 Report. London: Health Protection Services, Colindale. Available: http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1317131685847.

81. MüllerV, FraserC, HerbeckJT (2011) A Strong Case for Viral Genetic Factors in HIV Virulence. Viruses 3: 204–216 doi:10.3390/v3030204

82. LockettSF, RobertsonJR, BrettleRP, YapPL, MiddletonD, et al. (2001) Mismatched Human Leukocyte Antigen Alleles Protect Against Heterosexual HIV Transmission. JAIDS Journal of Acquired Immune Deficiency Syndromes 27: 277–280.

83. DorakMT, TangJ, Penman-AguilarA, WestfallAO, ZuluI, et al. (2004) Transmission of HIV-1 and HLA-B allele-sharing within serodiscordant heterosexual Zambian couples. The Lancet 363: 2137–2139 doi:10.1016/S0140-6736(04)16505-7

84. HinkleyT, MartinsJ, ChappeyC, HaddadM, StawiskiE, et al. (2011) A systems analysis of mutational effects in HIV-1 protease and reverse transcriptase. Nat Genet 43: 487–489 doi:10.1038/ng.795

85. AriënKK, TroyerRM, GaliY, ColebundersRL, ArtsEJ, et al. (2005) Replicative fitness of historical and recent HIV-1 isolates suggests HIV-1 attenuation over time. AIDS 19: 1555–1564.

86. LiuTF, ShaferRW (2006) Web Resources for HIV Type 1 Genotypic-Resistance Test Interpretation. Clin Infect Dis 42: 1608–1618 doi:10.1086/503914

87. RheeS-Y, GonzalesMJ, KantorR, BettsBJ, RavelaJ, et al. (2003) Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Research 31: 298–303.

88. ShaferRW (2006) Rationale and Uses of a Public HIV Drug-Resistance Database. The Journal of Infectious Diseases 194: S51–S58 doi:10.1086/505356

89. PriceMN, DehalPS, ArkinAP (2010) FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 5: e9490 doi:10.1371/journal.pone.0009490

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#