#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Bacterial Superantigens Promote Acute Nasopharyngeal Infection by in a Human MHC Class II-Dependent Manner


Streptococcus pyogenes is the most common cause of bacterial pharyngitis, also known as ‘strep throat’. However, this organism is also responsible for a range of other important human illnesses including necrotizing fasciitis and rheumatic heart disease (RHD). Indeed, complications from RHD and invasive infections by S. pyogenes are responsible for over one half million deaths per year in the world. S. pyogenes produces potent toxins called superantigens (SAgs), also known as the scarlet fever or erythrogenic toxins. SAgs have been studied for many years, yet we don't understand what purpose SAgs play in the life cycle of S. pyogenes. Rather than studying SAgs in the context of serious streptococcal disease, we studied the role of SAgs in a nasopharyngeal infection model. Our work demonstrates that for S. pyogenes to efficiently infect mice, the mice must express a human protein that is a receptor for the SAgs, and that S. pyogenes must produce SAgs. We further show that immunizing against SAgs prevents nasopharyngeal infection. This work demonstrates that SAgs are important factors for establishing infection by S. pyogenes and that SAgs may be potential candidates for inclusion within a S. pyogenes vaccine.


Vyšlo v časopise: Bacterial Superantigens Promote Acute Nasopharyngeal Infection by in a Human MHC Class II-Dependent Manner. PLoS Pathog 10(5): e32767. doi:10.1371/journal.ppat.1004155
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004155

Souhrn

Streptococcus pyogenes is the most common cause of bacterial pharyngitis, also known as ‘strep throat’. However, this organism is also responsible for a range of other important human illnesses including necrotizing fasciitis and rheumatic heart disease (RHD). Indeed, complications from RHD and invasive infections by S. pyogenes are responsible for over one half million deaths per year in the world. S. pyogenes produces potent toxins called superantigens (SAgs), also known as the scarlet fever or erythrogenic toxins. SAgs have been studied for many years, yet we don't understand what purpose SAgs play in the life cycle of S. pyogenes. Rather than studying SAgs in the context of serious streptococcal disease, we studied the role of SAgs in a nasopharyngeal infection model. Our work demonstrates that for S. pyogenes to efficiently infect mice, the mice must express a human protein that is a receptor for the SAgs, and that S. pyogenes must produce SAgs. We further show that immunizing against SAgs prevents nasopharyngeal infection. This work demonstrates that SAgs are important factors for establishing infection by S. pyogenes and that SAgs may be potential candidates for inclusion within a S. pyogenes vaccine.


Zdroje

1. CarapetisJR, SteerAC, MulhollandEK, WeberM (2005) The global burden of group A streptococcal diseases. Lancet Infect Dis 5: 685–694.

2. ShaikhN, LeonardE, MartinJM (2010) Prevalence of streptococcal pharyngitis and streptococcal carriage in children: a meta-analysis. Pediatrics 126: e557–564.

3. JohnsonDR, KurlanR, LeckmanJ, KaplanEL (2010) The human immune response to streptococcal extracellular antigens: clinical, diagnostic, and potential pathogenetic implications. Clin Infect Dis 50: 481–490.

4. LefebureT, RichardsVP, LangP, Pavinski-BitarP, StanhopeMJ (2012) Gene repertoire evolution of Streptococcus pyogenes inferred from phylogenomic analysis with Streptococcus canis and Streptococcus dysgalactiae. PloS One 7: e37607.

5. McCormickJK, YarwoodJM, SchlievertPM (2001) Toxic shock syndrome and bacterial superantigens: an update. Annu Rev Microbiol 55: 77–104.

6. CommonsRJ, SmeestersPR, ProftT, FraserJD, Robins-BrowneR, et al. (2013) Streptococcal superantigens: Categorization and clinical associations. Trends Mol Med 20: 48–62.

7. BeresSB, MusserJM (2007) Contribution of exogenous genetic elements to the group A Streptococcus metagenome. PloS One 2: e800.

8. OkumuraK, ShimomuraY, MurayamaSY, YagiJ, UbukataK, et al. (2012) Evolutionary paths of streptococcal and staphylococcal superantigens. BMC Genomics 13: 404.

9. PanchaudA, GuyL, CollynF, HaenniM, NakataM, et al. (2009) M-protein and other intrinsic virulence factors of Streptococcus pyogenes are encoded on an ancient pathogenicity island. BMC Genomics 10: 198.

10. SundbergEJ, DengL, MariuzzaRA (2007) TCR recognition of peptide/MHC class II complexes and superantigens. Semin Immunol 19: 262–271.

11. KotbM, Norrby-TeglundA, McGeerA, El-SherbiniH, DorakMT, et al. (2002) An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nat Med 8: 1398–1404.

12. NoohMM, El-GengehiN, KansalR, DavidCS, KotbM (2007) HLA transgenic mice provide evidence for a direct and dominant role of HLA class II variation in modulating the severity of streptococcal sepsis. J Immunol 178: 3076–3083.

13. Norrby-TeglundA, ChatellierS, LowDE, McGeerA, GreenK, et al. (2000) Host variation in cytokine responses to superantigens determine the severity of invasive group A streptococcal infection. Eur J Immunol 30: 3247–3255.

14. SriskandanS, UnnikrishnanM, KrauszT, DewchandH, Van NoordenS, et al. (2001) Enhanced susceptibility to superantigen-associated streptococcal sepsis in human leukocyte antigen-DQ transgenic mice. J Infect Dis 184: 166–173.

15. LlewelynM, SriskandanS, PeakmanM, AmbrozakDR, DouekDC, et al. (2004) HLA class II polymorphisms determine responses to bacterial superantigens. J Immunol 172: 1719–1726.

16. DickGF, DickGH (1924) A skin test for susceptibility to scarlet fever. JAMA 82: 256–266.

17. SchlievertPM, BettinKM, WatsonDW (1979) Reinterpretation of the Dick test: role of group A streptococcal pyrogenic exotoxin. Infect Immun 26: 467–472.

18. ConeLA, WoodardDR, SchlievertPM, TomoryGS (1987) Clinical and bacteriologic observations of a toxic shock-like syndrome due to Streptococcus pyogenes. N Engl J Med 317: 146–149.

19. StevensDL, TannerMH, WinshipJ, SwartsR, RiesKM, et al. (1989) Severe group A streptococcal infections associated with a toxic shock-like syndrome and scarlet fever toxin A. N Engl J Med 321: 1–7.

20. ParkHS, CostalongaM, ReinhardtRL, DombekPE, JenkinsMK, et al. (2004) Primary induction of CD4 T cell responses in nasal associated lymphoid tissue during group A streptococcal infection. Eur J Immunol 34: 2843–2853.

21. WangB, DileepanT, BriscoeS, HylandKA, KangJ, et al. (2010) Induction of TGF-beta1 and TGF-beta1-dependent predominant Th17 differentiation by group A streptococcal infection. Proc Natl Acad Sci U S A 107: 5937–5942.

22. SmootJC, BarbianKD, Van GompelJJ, SmootLM, ChausseeMS, et al. (2002) Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc Natl Acad Sci U S A 99: 4668–4673.

23. ThibodeauJ, LabrecqueN, DenisF, HuberBT, SekalyRP (1994) Binding sites for bacterial and endogenous retroviral superantigens can be dissociated on major histocompatibility complex class II molecules. J Exp Med 179: 1029–1034.

24. UlrichRG, BavariS, OlsonMA (1995) Staphylococcal enterotoxins A and B share a common structural motif for binding class II major histocompatibility complex molecules. Nat Struct Biol 2: 554–560.

25. O'BrienKL, BeallB, BarrettNL, CieslakPR, ReingoldA, et al. (2002) Epidemiology of invasive group A Streptococcus disease in the United States, 1995–1999. Clin Infect Dis 35: 268–276.

26. Sanderson-SmithML, DinklaK, ColeJN, CorkAJ, MaamaryPG, et al. (2008) M protein-mediated plasminogen binding is essential for the virulence of an invasive Streptococcus pyogenes isolate. FASEB J 22: 2715–2722.

27. SunH, XuY, SitkiewiczI, MaY, WangX, et al. (2012) Inhibitor of streptokinase gene expression improves survival after group A Streptococcus infection in mice. Proc Natl Acad Sci U S A 109: 3469–3474.

28. MatsuiH, SekiyaY, NakamuraM, MurayamaSY, YoshidaH, et al. (2009) CD46 transgenic mouse model of necrotizing fasciitis caused by Streptococcus pyogenes infection. Infect Immun 77: 4806–4814.

29. SugaharaK, SchwartzNB, DorfmanA (1979) Biosynthesis of hyaluronic acid by Streptococcus. J Biol Chem 254: 6252–6261.

30. WesselsMR, BronzeMS (1994) Critical role of the group A streptococcal capsule in pharyngeal colonization and infection in mice. Proc Natl Acad Sci U S A 91: 12238–12242.

31. CywesC, StamenkovicI, WesselsMR (2000) CD44 as a receptor for colonization of the pharynx by group A Streptococcus. J Clin Invest 106: 995–1002.

32. BanerjiS, WrightAJ, NobleM, MahoneyDJ, CampbellID, et al. (2007) Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction. Nat Struct Mol Biol 14: 234–239.

33. LoofTG, RohdeM, ChhatwalGS, JungS, MedinaE (2007) The contribution of dendritic cells to host defenses against Streptococcus pyogenes. J Infect Dis 196: 1794–1803.

34. CortesG, WesselsMR (2009) Inhibition of dendritic cell maturation by group A Streptococcus. J Infect Dis 200: 1152–1161.

35. MurailleE, De SmedtT, AndrisF, PajakB, ArmantM, et al. (1997) Staphylococcal enterotoxin B induces an early and transient state of immunosuppression characterized by V beta-unrestricted T cell unresponsiveness and defective antigen-presenting cell functions. J Immunol 158: 2638–2647.

36. DileepanT, LinehanJL, MoonJJ, PepperM, JenkinsMK, et al. (2011) Robust antigen specific Th17 T cell response to group A Streptococcus is dependent on IL-6 and intranasal route of infection. PLoS pathogens 7: e1002252.

37. LaPentaD, RubensC, ChiE, ClearyPP (1994) Group A streptococci efficiently invade human respiratory epithelial cells. Proc Natl Acad Sci U S A 91: 12115–12119.

38. SchragerHM, RheinwaldJG, WesselsMR (1996) Hyaluronic acid capsule and the role of streptococcal entry into keratinocytes in invasive skin infection. J Clin Invest 98: 1954–1958.

39. UnnikrishnanM, AltmannDM, ProftT, WahidF, CohenJ, et al. (2002) The bacterial superantigen streptococcal mitogenic exotoxin Z is the major immunoactive agent of Streptococcus pyogenes. J Immunol 169: 2561–2569.

40. McCormickJK, TrippTJ, OlmstedSB, MatsukaYV, GahrPJ, et al. (2000) Development of streptococcal pyrogenic exotoxin C vaccine toxoids that are protective in the rabbit model of toxic shock syndrome. J Immunol 165: 2306–2312.

41. RoggianiM, StoehrJA, OlmstedSB, MatsukaYV, PillaiS, et al. (2000) Toxoids of streptococcal pyrogenic exotoxin A are protective in rabbit models of streptococcal toxic shock syndrome. Infect Immun 68: 5011–5017.

42. WelcherBC, CarraJH, DaSilvaL, HansonJ, DavidCS, et al. (2002) Lethal shock induced by streptococcal pyrogenic exotoxin A in mice transgenic for human leukocyte antigen-DQ8 and human CD4 receptors: implications for development of vaccines and therapeutics. J Infect Dis 186: 501–510.

43. DagnelieCF, van der GraafY, De MelkerRA (1996) Do patients with sore throat benefit from penicillin? A randomized double-blind placebo-controlled clinical trial with penicillin V in general practice. Br J Gen Pract 46: 589–593.

44. BarsumianEL, SchlievertPM, WatsonDW (1978) Nonspecific and specific immunological mitogenicity by group A streptococcal pyrogenic exotoxins. Infect Immun 22: 681–688.

45. KamezawaY, NakaharaT, NakanoS, AbeY, Nozaki-RenardJ, et al. (1997) Streptococcal mitogenic exotoxin Z, a novel acidic superantigenic toxin produced by a T1 strain of Streptococcus pyogenes. Infect Immun 65: 3828–3833.

46. ProftT, MoffattSL, BerkahnCJ, FraserJD (1999) Identification and characterization of novel superantigens from Streptococcus pyogenes. J Exp Med 189: 89–102.

47. SmootLM, McCormickJK, SmootJC, HoeNP, StricklandI, et al. (2002) Characterization of two novel pyrogenic toxin superantigens made by an acute rheumatic fever clone of Streptococcus pyogenes associated with multiple disease outbreaks. Infect Immun 70: 7095–7104.

48. LiPL, TiedemannRE, MoffatSL, FraserJD (1997) The superantigen streptococcal pyrogenic exotoxin C (SPE-C) exhibits a novel mode of action. J Exp Med 186: 375–383.

49. BasmaH, Norrby-TeglundA, GuedezY, McGeerA, LowDE, et al. (1999) Risk factors in the pathogenesis of invasive group A streptococcal infections: role of protective humoral immunity. Infect Immun 67: 1871–1877.

50. ErikssonBK, AnderssonJ, HolmSE, NorgrenM (1999) Invasive group A streptococcal infections: T1M1 isolates expressing pyrogenic exotoxins A and B in combination with selective lack of toxin-neutralizing antibodies are associated with increased risk of streptococcal toxic shock syndrome. J Infect Dis 180: 410–418.

51. Norrby-TeglundA, PauksensK, HolmSE, NorgrenM (1994) Relation between low capacity of human sera to inhibit streptococcal mitogens and serious manifestation of disease. J Infect Dis 170: 585–591.

52. BiswasI, GrussA, EhrlichSD, MaguinE (1993) High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol 175: 3628–3635.

53. JiY, McLandsboroughL, KondaguntaA, ClearyPP (1996) C5a peptidase alters clearance and trafficking of group A streptococci by infected mice. Infect Immun 64: 503–510.

54. Sambrook J, Russell DW (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

55. Nur-ur RahmanAK, BonsorDA, HerfstCA, PollardF, PeirceM, et al. (2011) The T cell receptor beta-chain second complementarity determining region loop (CDR2beta) governs T cell activation and Vbeta specificity by bacterial superantigens. J Biol Chem 286: 4871–4881.

56. KapustRB, TozserJ, FoxJD, AndersonDE, CherryS, et al. (2001) Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng 14: 993–1000.

57. BrouillardJN, GuntherS, VarmaAK, GryskiI, HerfstCA, et al. (2007) Crystal structure of the streptococcal superantigen SpeI and functional role of a novel loop domain in T cell activation by group V superantigens. J Mol Biol 367: 925–934.

58. GuntherS, VarmaAK, MozaB, KasperKJ, WyattAW, et al. (2007) A novel loop domain in superantigens extends their T cell receptor recognition site. J Mol Biol 371: 210–221.

59. ItoK, BianHJ, MolinaM, HanJ, MagramJ, et al. (1996) HLA-DR4-IE chimeric class II transgenic, murine class II-deficient mice are susceptible to experimental allergic encephalomyelitis. J Exp Med 183: 2635–2644.

60. HillJA, BellDA, BrintnellW, YueD, WehrliB, et al. (2008) Arthritis induced by posttranslationally modified (citrullinated) fibrinogen in DR4-IE transgenic mice. J Exp Med 205: 967–979.

61. ParkHS, FrancisKP, YuJ, ClearyPP (2003) Membranous cells in nasal-associated lymphoid tissue: a portal of entry for the respiratory mucosal pathogen group A Streptococcus. J Immunol 171: 2532–2537.

62. EarhartCA, VathGM, RoggianiM, SchlievertPM, OhlendorfDH (2000) Structure of streptococcal pyrogenic exotoxin A reveals a novel metal cluster. Protein Sci 9: 1847–1851.

63. LeeKH, WucherpfennigKW, WileyDC (2001) Structure of a human insulin peptide-HLA-DQ8 complex and susceptibility to type 1 diabetes. Nat Immun 2: 501–507.

64. SundbergEJ, AndersenPS, SchlievertPM, KarjalainenK, MariuzzaRA (2003) Structural, energetic, and functional analysis of a protein-protein interface at distinct stages of affinity maturation. Structure 11: 1151–1161.

65. PavlidisP, NobleWS (2003) Matrix2png: a utility for visualizing matrix data. Bioinformatics 19: 295–296.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#