#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Methyl Farnesoate Plays a Dual Role in Regulating Metamorphosis


Methyl farnesoate (MF) is the immediate precursor of juvenile hormone (JH) III in the JH biosynthetic pathway, and lacks the epoxide moiety characteristic of JHs. The potential role of MF as a JH in arthropods has been an issue of a long-standing debate. In this report, comprehensive molecular genetics studies demonstrated that MF plays a dual role in regulating Drosophila metamorphosis. MF is produced by the larval CA and released into the hemolymph, from where it exerted its anti-metamorphic effects indirectly after conversion to JHB3, as well as acting as a hormone itself through a direct interaction with Met and Gce, the two JH receptors.


Vyšlo v časopise: Methyl Farnesoate Plays a Dual Role in Regulating Metamorphosis. PLoS Genet 11(3): e32767. doi:10.1371/journal.pgen.1005038
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005038

Souhrn

Methyl farnesoate (MF) is the immediate precursor of juvenile hormone (JH) III in the JH biosynthetic pathway, and lacks the epoxide moiety characteristic of JHs. The potential role of MF as a JH in arthropods has been an issue of a long-standing debate. In this report, comprehensive molecular genetics studies demonstrated that MF plays a dual role in regulating Drosophila metamorphosis. MF is produced by the larval CA and released into the hemolymph, from where it exerted its anti-metamorphic effects indirectly after conversion to JHB3, as well as acting as a hormone itself through a direct interaction with Met and Gce, the two JH receptors.


Zdroje

1. Goodman WG, Cusson M (2012) The juvenile hormones. In: Gilbert LI, editor. Insect endocrinology. Amsterdam: Elsevier; 2012 pp. 310–365.

2. Richard DS, Applebaum SW, Sliter TJ, Baker FC, Schooley DA, et al. (1989) Juvenile hormone bisepoxide biosynthesis in vitro by the ring gland of Drosophila melanogaster: a putative juvenile hormone in the higher Diptera. Proc Natl Acad Sci USA 86: 1421–1425. 2493154

3. Kotaki T, Shinada T, Kaihara K, Ohfune Y, Numata H (2009) Structure determination of a new juvenile hormone from a heteropteran insect. Org Lett. 11:5234–5237. doi: 10.1021/ol902161x 19863071

4. Nagaraju GPC (2011) Reproductive regulators in decapod crustaceans: an overview. J Exp Biol 214: 3–16. doi: 10.1242/jeb.047183 21147963

5. Teal PE, Jones D, Jones G, Torto B, Nyasembe V, et al. (2014) Identification of methyl farnesoate from the hemolymph of insects. J Nat Prod 77: 402–405. doi: 10.1021/np400807v 24467367

6. Harshman LG, Song KD, Casas J, Schuurmans A, Kuwano E, et al. (2010) Bioassays of compounds with potential juvenoid activity on Drosophila melanogaster: Juvenile hormone III, bisepoxide juvenile hormone III and methyl farnesoates. J Insect Physiol 56: 1465–1470. doi: 10.1016/j.jinsphys.2010.06.003 20599543

7. Jones G, Jones D, Li X, Tang L, Ye L, et al. (2010) Activities of natural methyl farnesoids on pupariation and metamorphosis of Drosophila melanogaster. J Insect Physiol 56: 1456–1464. doi: 10.1016/j.jinsphys.2010.06.001 20541556

8. Jones D, Jones G, Teal P, Hammac C, Messmer L, et al. (2010) Suppressed production of methyl farnesoid hormones yields developmental defects and lethality in Drosophila larvae. Gen. Comp. Endocrinol. 165:244–254. doi: 10.1016/j.ygcen.2009.07.006 19595690

9. Jones G., Teal P., Henrich V., Krzywonos A., Sapa A., et al. (2013a) Ligand binding pocket function of Drosophila USP is necessary for metamorphosis. Gen Comp Endocrinol 182: 73–82. doi: 10.1016/j.ygcen.2012.11.009 23211750

10. Jones D, Jones G, Teal P (2013b) Sesquiterpene action, and morphogenetic signaling through the ortholog of retinoid X receptor, in higher Diptera. Gen Comp Endocrinol 194: 326–335. doi: 10.1016/j.ygcen.2013.09.021 24120505

11. Belles X, Martin D, Piulachs MD (2005) The mevalonate pathway and the synthesis of juvenile hormone in insects. Annu Rev Entomol 50: 181–199. 15355237

12. Shinoda T, Itoyama K (2003) Juvenile hormone acid methyltransferase: a key regulatory enzyme for insect metamorphosis. Proc Natl Acad Sci USA 100: 11986–11991. 14530389

13. Niwa R., Niimi T., Honda N., Yoshiyama M., Itoyama K., et al. (2008) Juvenile hormone acid O-methyltransferase in Drosophila melanogaster. Insect Biochem Mol Biol 38: 714–720. doi: 10.1016/j.ibmb.2008.04.003 18549957

14. Huang J., Tian L., Abdou M., Wen D., Wang Y., et al. (2011) DPP-mediated TGF-β signaling regulates juvenile hormone biosynthesis by upregulating expression of JH acid methyltransferase. Development 138: 2283–2291. doi: 10.1242/dev.057687 21558376

15. Helvig C, Koener JF, Unnithan GC, Feyereisen R (2004) CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata. Proc Natl Acad Sci USA 101: 4024–4029. 15024118

16. Daimon T, Kozaki T, Niwa R, Kobayashi I, Furuta K, et al. (2012) Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori. PLoS Genet 8: e1002486. doi: 10.1371/journal.pgen.1002486 22412378

17. Defelipe LA, Dolghih E, Roitberg AE, Nouzova M, Mayoral JG, et al. (2011) Juvenile hormone synthesis: “esterify then epoxidize” or “epoxidize then esterify”? Insights from the structural characterization of juvenile hormone acid methyltransferase. Insect Biochem Mol Biol 41: 228–235. doi: 10.1016/j.ibmb.2010.12.008 21195763

18. Richard DS, Applebaum SW, Gilbert LI (1989) Developmental regulation of juvenile hormone biosynthesis by the ring gland of Drosophila. J Comp Physiol [B] 159: 383–387. 2509524

19. Bendena WG, Zhang JR, Burtenshaw SM, Tobe SS (2011) Evidence for differential biosynthesis of juvenile hormone (and related) sesquiterpenoids in Drosophila melanogaster. Gen Comp Endocrinol 172: 56–61. doi: 10.1016/j.ygcen.2011.02.014 21354154

20. Liu Y, Sheng Z, Liu H, Wen D, He Q, et al. (2009) Juvenile hormone counteracts the bHLH-PAS transcriptional factor MET and GCE to prevent caspase-dependent programmed cell death in Drosophila. Development 136: 2015–2025. doi: 10.1242/dev.033712 19465595

21. Abdou M, He Q, Wen D, Zyaan O, Wang J, et al. (2011) Drosophila Met and Gce are partially redundant in transducing juvenile hormone action. Insect Biochem Mol Biol 41: 938–945. doi: 10.1016/j.ibmb.2011.09.003 21968404

22. Riddiford LM, Truman JW, Mirth CK, Shen YC (2010) A role for juvenile hormone in the prepupal development of Drosophila melanogaster. Development 137: 1117–1126. doi: 10.1242/dev.037218 20181742

23. Gruntenko NE, Wen D, Karpova EK, Adonyeva NV, Liu Y, et al. (2010) Altered juvenile hormone metabolism, reproduction and stress resistance in Drosophila adults with genetic ablation of the corpus allatum cells. Insect Biochem Mol Biol 40: 891–897. doi: 10.1016/j.ibmb.2010.09.001 20849954

24. Jindra M, Palli SR, Riddiford LM (2013) The juvenile hormone signaling pathway in insect development. Annu Rev Entomol 58: 181–204. doi: 10.1146/annurev-ento-120811-153700 22994547

25. Ashok M, Turner C, Wilson TG (1988) Insect juvenile hormone resistance gene homology with the bHLH-PAS family of transcriptional regulators. Proc Natl Acad Sci USA 95: 2761–2766.

26. Godlewski J, Wang SL, Wilson TG (2006) Interaction of bHLH-PAS proteins involved in juvenile hormone reception in Drosophila. Biochem Biophys Res Commun 342: 1305–1311. 16516852

27. Miura K, Oda M, Makita S, Chinzei Y (2005) Characterization of the Drosophila Methoprene-tolerant gene product. Juvenile hormone binding and ligand-dependent gene regulation. FEBS J 272: 1169–1178. 15720391

28. Charles J P, Iwema T, Epa V C, Takaki K, Rynes J et al. (2011) Ligand-binding properties of a juvenile hormone receptor, methoprene-tolerant. Proc Natl Acad Sci USA 108: 21128–21133. doi: 10.1073/pnas.1116123109 22167806

29. Konopova B, Jindra M (2007) Juvenile hormone resistance gene Methoprene-tolerant controls entry into metamorphosis in the beetle Tribolium castaneum. Proc Natl Acad Sci USA 104: 10488–10493. 17537916

30. Minakuchi C, Zhou X, Riddiford LM (2008) Krüppel homolog 1 (Kr-h1) mediates juvenile hormone action during metamorphosis of Drosophila melanogaster. Mech Dev 125: 91–105. 18036785

31. He Q, Wen D, Jia Q, Cui C, Wang J, et al. (2014) Heat shock protein 83 (Hsp83) facilitates methoprene-tolerant (Met) nuclear import to modulate juvenile hormone signaling. J Bio Chem doi: 10.1074/jbc.M114.582825

32. Gong WJ, Golic KG (2003) Ends-out, or replacement, gene targeting in Drosophila. Proc Natl Acad Sci USA 100: 2556–2561. 12589026

33. Zhang H, Tian L, Tobe S, Xiong Y, Wang S, et al. (2010) Drosophila CG10527 mutants are resistant to juvenile hormone and its analog methoprene. Biochem Bioph Res Co 401: 182–187.

34. Rivera-Perez C, Nouzova M, Noriega FG (2012) A quantitative assay for the juvenile hormones and their precursors using fluorescent tags. PLoS One 7: e43784. doi: 10.1371/journal.pone.0043784 22928033

35. Gunawardene YI, Chow BK, He JG, Chan SM (2001) The shrimp FAMeT cDNA is encoded for a putative enzyme involved in the methylfarnesoate (MF) biosynthetic pathway and is temporally expressed in the eyestalk of different sexes. Insect Biochem Mol Biol 31: 1115–1124. 11520690

36. Burtenshaw SM, Su PP, Zhang JR, Tobe SS, Dayton L, et al. (2008) A putative farnesoic acid O-methyltransferase (FAMeT) orthologue in Drosophila melanogaster (CG10527): Relationship to juvenile hormone biosynthesis? Peptides 29: 242–251. doi: 10.1016/j.peptides.2007.10.030 18242777

37. Zhang Z, Xu J, Sheng Z, Sui Y, Palli SR (2011) Steroid receptor co-activator is required for juvenile hormone signal transduction through a bHLH-PAS transcription factor, methoprene tolerant. J Biol Chem 286: 8437–8447. doi: 10.1074/jbc.M110.191684 21190938

38. Miyakawa H, Toyota K, Hirakawa I, Ogino Y, Miyagawa S, et al. (2013) A mutation in the receptor Methoprene-tolerant alters juvenile hormone response in insects and crustaceans. Nat Comm 4: 1856.

39. Kayukawa T, Minakuchi C, Namiki T, Togawa T, Yoshiyama M, et al. (2012) Transcriptional regulation of juvenile hormone-mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis. Proc Natl Acad Sci USA 109: 11729–11734. doi: 10.1073/pnas.1204951109 22753472

40. Grbic M, Van Leeuwen T, Clark RM, Rombauts S, Rouze P, et al. (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479: 487–492. doi: 10.1038/nature10640 22113690

41. Chipman AD, Ferrier DEK, Brena C, Qu J, Hughes DST, et al. (2014) The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima. PLoS Biol 12:e1002005. doi: 10.1371/journal.pbio.1002005 25423365

42. Chung H, Sztal T, Pasricha S, Sridhar M, Batterham P, et al. (2009) Characterization of Drosophila melanogaster cytochrome P450 genes. Proc Natl Acad Sci USA 106: 5731–5736. doi: 10.1073/pnas.0812141106 19289821

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#