-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Tertiary siRNAs Mediate Paramutation in .
Transgenerational epigenetic gene silencing has been shown to be important for organisms to react directly to their environment without the need to acquire genetic mutations. The inheritance of acquired traits via the gametes can prove advantageous in fast reproducing organisms. In Caenorhabditis elegans, a free-living nematode, multigenerational epigenetic inheritance can be induced by exogenous (experimentally provided) and endogenous cues that trigger small RNA-dependent gene silencing in the germline of these animals. PIWI interacting small RNAs (piRNAs) are required for the initiation of stable silencing of invading genomic elements in the germline such as transposons. Gene silencing established by piRNAs can subsequently be maintained over multiple generations without the original trigger. In C. elegans, this stable maintenance of silencing requires an additional class of small interfering RNAs (siRNAs) that must be amplified in each generation in order to maintain multigenerational silencing. Here we show that these siRNAs fall into two distinct classes, which we call secondary and tertiary siRNAs. We find that the production of tertiary siRNAs is part of a nuclear amplification pathway associated with the stable heritable silencing of an allele, a form of paramutation. This amplification pathway therefore promotes germline integrity and possibly the inheritance of acquired physiological traits.
Vyšlo v časopise: Tertiary siRNAs Mediate Paramutation in .. PLoS Genet 11(3): e32767. doi:10.1371/journal.pgen.1005078
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005078Souhrn
Transgenerational epigenetic gene silencing has been shown to be important for organisms to react directly to their environment without the need to acquire genetic mutations. The inheritance of acquired traits via the gametes can prove advantageous in fast reproducing organisms. In Caenorhabditis elegans, a free-living nematode, multigenerational epigenetic inheritance can be induced by exogenous (experimentally provided) and endogenous cues that trigger small RNA-dependent gene silencing in the germline of these animals. PIWI interacting small RNAs (piRNAs) are required for the initiation of stable silencing of invading genomic elements in the germline such as transposons. Gene silencing established by piRNAs can subsequently be maintained over multiple generations without the original trigger. In C. elegans, this stable maintenance of silencing requires an additional class of small interfering RNAs (siRNAs) that must be amplified in each generation in order to maintain multigenerational silencing. Here we show that these siRNAs fall into two distinct classes, which we call secondary and tertiary siRNAs. We find that the production of tertiary siRNAs is part of a nuclear amplification pathway associated with the stable heritable silencing of an allele, a form of paramutation. This amplification pathway therefore promotes germline integrity and possibly the inheritance of acquired physiological traits.
Zdroje
1. Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1 : 76–80. Available: http://www.landesbioscience.com/journals/epigenetics/hollidayEPI1-2.pdf. 17998809
2. Jablonka E, Lamb MJ (2008) Soft inheritance: challenging the modern synthesis. Genetics and Molecular Biology. Available: http://www.scielo.br/pdf/gmb/v31n2/a01v31n2.pdf.
3. Ashe A, Sapetschnig A, Weick E-M, Mitchell J, Bagijn MP, et al. (2012) piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150 : 88–99. doi: 10.1016/j.cell.2012.06.018 22738725
4. Shirayama M, Seth M, Lee H-C, Gu W, Ishidate T, et al. (2012) piRNAs Initiate an Epigenetic Memory of Nonself RNAin the C. elegans Germline. Cell 150 : 65–77. doi: 10.1016/j.cell.2012.06.015 22738726
5. Luteijn MJ, van Bergeijk P, Kaaij LJT, Almeida MV, Roovers EF, et al. (2012) Extremely stable Piwi-induced gene silencing in Caenorhabditis elegans. EMBO J 31 : 3422–3430. doi: 10.1038/emboj.2012.213 22850670
6. Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi-piRNA Pathway Provides an Adaptive Defense in the Transposon Arms Race. Science 318 : 761–764. doi: 10.1126/science.1146484 17975059
7. Siomi MC, Sato K, Pezic D, Aravin AA (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nature Publishing Group 12 : 246–258. Available: http://dx.org/10.1038/nrm3089.
8. Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9 : 22–32. Available: http://www.nature.com/doifinder/10.1038/nrm2321. 18073770
9. Das PP, Bagijn MP, Goldstein LD, Woolford JR, Lehrbach NJ, et al. (2008) Piwi and piRNAs Act Upstream of an Endogenous siRNA Pathway to Suppress Tc3 Transposon Mobility in the Caenorhabditis elegans Germline. Mol Cell 31 : 79–90. doi: 10.1016/j.molcel.2008.06.003 18571451
10. Batista PJ, Ruby JG, Claycomb JM, Chiang R, Fahlgren N, et al. (2008) PRG-1 and 21U-RNAs Interact to Form the piRNA Complex Required for Fertility in C. elegans. Mol Cell 31 : 67–78. doi: 10.1016/j.molcel.2008.06.002 18571452
11. Bagijn MP, Goldstein LD, Sapetschnig A, Weick EM, Bouasker S, et al. (2012) Function, Targets, and Evolution of Caenorhabditis elegans piRNAs. Science 337 : 574–578. doi: 10.1126/science.1220952 22700655
12. Phillips CM, Montgomery TA, Breen PC, Ruvkun G (2012) MUT-16 promotes formation of perinuclear mutator foci required for RNA silencing in the C. elegans germline. Genes Dev 26 : 1433–1444. doi: 10.1101/gad.193904.112 22713602
13. Buckley BA, Burkhart KB, Gu SG, Spracklin G, Kershner A, et al. (2013) A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature 489 : 447–451. doi: 10.1038/nature11352
14. Guang S, Bochner AF, Burkhart KB, Burton N, Pavelec DM, et al. (2010) Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription. Nature 465 : 1097–1101. doi: 10.1038/nature09095 20543824
15. Burkhart KB, Guang S, Buckley BA, Wong L, Bochner AF, et al. (2011) A Pre-mRNA–Associating Factor Links Endogenous siRNAs to Chromatin Regulation. PLoS Genet 7: e1002249. Available: http://dx.plos.org/10.1371/journal.pgen.1002249.t001. doi: 10.1371/journal.pgen.1002249 21901112
16. Grishok A (2000) Genetic Requirements for Inheritance of RNAi in C. elegans. Science 287 : 2494–2497. doi: 10.1126/science.287.5462.2494 10741970
17. Alcazar RM, Lin R, Fire AZ (2008) Transmission Dynamics of Heritable Silencing Induced by Double-Stranded RNA in Caenorhabditis elegans. Genetics 180 : 1275–1288. doi: 10.1534/genetics.108.089433 18757930
18. Pak J, Maniar JM, Mello CC, Fire A (2012) Protection from Feed-Forward Amplification in an Amplified RNAi Mechanism. Cell 151 : 885–899. doi: 10.1016/j.cell.2012.10.022 23141544
19. Chandler VL (2010) Paramutation's Properties and Puzzles. Science 330 : 628–629. doi: 10.1126/science.1191044 21030647
20. Gu W, Shirayama M, Conte D, Vasale J, Batista PJ, et al. (2009) Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline. Mol Cell 36 : 231–244. doi: 10.1016/j.molcel.2009.09.020 19800275
21. Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, et al. (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107 : 465–476. 11719187
22. Alleman M, Sidorenko L, McGinnis K, Seshadri V, Dorweiler JE, et al. (2006) An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442 : 295–298. doi: 10.1038/nature04884 16855589
23. Arteaga-Vazquez M, Sidorenko L, Rabanal FA, Shrivistava R, Nobuta K, et al. (2010) RNA-mediated trans-communication can establish paramutation at the b1 locus in maize. Proceedings of the National Academy of Sciences 107 : 12986–12991. Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=20616013&retmode=ref&cmd=prlinks. doi: 10.1073/pnas.1007972107 20616013
24. Sijen T, Steiner FA, Thijssen KL, Plasterk RHA (2007) Secondary siRNAs Result from Unprimed RNA Synthesis and Form a Distinct Class. Science 315 : 244–247. doi: 10.1126/science.1136699 17158288
25. Pak J, Fire A (2007) Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315 : 241–244. Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=17124291&retmode=ref&cmd=prlinks. 17124291
26. ZHUANG JJ, Banse SA, Hunter CP (2013) The nuclear argonaute NRDE-3 contributes to transitive RNAi in Caenorhabditis elegans. Genetics 194 : 117–131. Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23457236&retmode=ref&cmd=prlinks. doi: 10.1534/genetics.113.149765 23457236
27. Wedeles CJ, Wu MZ, Claycomb JM (2013) Short Article. Developmental Cell 27 : 664–671. doi: 10.1016/j.devcel.2013.11.016 24360783
28. Seth M, Shirayama M, Gu W, Ishidate T, Conte D Jr, et al. (2013) Short Article. Developmental Cell 27 : 656–663. doi: 10.1016/j.devcel.2013.11.014 24360782
29. Ni JZ, Chen E, Gu SG (2014) Complex coding of endogenous siRNA, transcriptional silencing and H3K9 methylation on native targets of germline nuclear RNAi in C. elegans. 15 : 1–14. doi: 10.1186/1471-2164-15-1157
30. Gerisch B, Weitzel C, Kober-Eisermann C, Rottiers V, Antebi A (2001) A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Developmental Cell 1 : 841–851. Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=11740945&retmode=ref&cmd=prlinks. 11740945
31. Angelo G, Van Gilst MR (2009) Starvation Protects Germline Stem Cells and Extends Reproductive Longevity in C. elegans. Science 326 : 954–958. doi: 10.1126/science.1178343 19713489
32. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77 : 71–94. Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=4366476&retmode=ref&cmd=prlinks. 4366476
33. Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Developmental Biology 56 : 110–156. Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=838129&retmode=ref&cmd=prlinks. 838129
34. Kamminga LM, van Wolfswinkel JC, Luteijn MJ, Kaaij LJT, Bagijn MP, et al. (2012) Differential impact of the HEN1 homolog HENN-1 on 21U and 26G RNAs in the germline of Caenorhabditis elegans. PLoS Genet 8: e1002702. doi: 10.1371/journal.pgen.1002702 22829772
35. Ashe A, Bélicard T, Le Pen J, Sarkies P, Frézal L, et al. (2013) A deletion polymorphism in the Caenorhabditis elegans RIG-I homolog disables viral RNA dicing and antiviral immunity. Elife 2: e00994. doi: 10.7554/eLife.00994 24137537
36. Weick E-M, Sarkies P, Silva N, Chen RA, Moss SMM, et al. (2014) PRDE-1 is a nuclear factor essential for the biogenesis of Ruby motif-dependent piRNAs in C. elegans. Genes Dev 28 : 783–796. doi: 10.1101/gad.238105.114 24696457
Štítky
Genetika Reprodukčná medicína
Článek NLRC5 Exclusively Transactivates MHC Class I and Related Genes through a Distinctive SXY ModuleČlánek Inhibition of Telomere Recombination by Inactivation of KEOPS Subunit Cgi121 Promotes Cell LongevityČlánek HOMER2, a Stereociliary Scaffolding Protein, Is Essential for Normal Hearing in Humans and MiceČlánek LRGUK-1 Is Required for Basal Body and Manchette Function during Spermatogenesis and Male FertilityČlánek The GATA Factor Regulates . Developmental Timing by Promoting Expression of the Family MicroRNAsČlánek Systems Biology of Tissue-Specific Response to Reveals Differentiated Apoptosis in the Tick VectorČlánek Phenotype Specific Analyses Reveal Distinct Regulatory Mechanism for Chronically Activated p53Článek The Nuclear Receptor DAF-12 Regulates Nutrient Metabolism and Reproductive Growth in NematodesČlánek The ATM Signaling Cascade Promotes Recombination-Dependent Pachytene Arrest in Mouse SpermatocytesČlánek The Small Protein MntS and Exporter MntP Optimize the Intracellular Concentration of Manganese
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2015 Číslo 3- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- NLRC5 Exclusively Transactivates MHC Class I and Related Genes through a Distinctive SXY Module
- Licensing of Primordial Germ Cells for Gametogenesis Depends on Genital Ridge Signaling
- A Genomic Duplication is Associated with Ectopic Eomesodermin Expression in the Embryonic Chicken Comb and Two Duplex-comb Phenotypes
- Genome-wide Association Study and Meta-Analysis Identify as Genome-wide Significant Susceptibility Gene for Bladder Exstrophy
- Mutations of Human , Encoding the Mitochondrial Asparaginyl-tRNA Synthetase, Cause Nonsyndromic Deafness and Leigh Syndrome
- Exome Sequencing in an Admixed Isolated Population Indicates Variants Confer a Risk for Specific Language Impairment
- Genome-Wide Association Studies in Dogs and Humans Identify as a Risk Variant for Cleft Lip and Palate
- Rapid Evolution of Recombinant for Xylose Fermentation through Formation of Extra-chromosomal Circular DNA
- The Ribosome Biogenesis Factor Nol11 Is Required for Optimal rDNA Transcription and Craniofacial Development in
- Methyl Farnesoate Plays a Dual Role in Regulating Metamorphosis
- Maternal Co-ordinate Gene Regulation and Axis Polarity in the Scuttle Fly
- Maternal Filaggrin Mutations Increase the Risk of Atopic Dermatitis in Children: An Effect Independent of Mutation Inheritance
- Inhibition of Telomere Recombination by Inactivation of KEOPS Subunit Cgi121 Promotes Cell Longevity
- Clonality and Evolutionary History of Rhabdomyosarcoma
- HOMER2, a Stereociliary Scaffolding Protein, Is Essential for Normal Hearing in Humans and Mice
- Methylation-Sensitive Expression of a DNA Demethylase Gene Serves As an Epigenetic Rheostat
- BREVIPEDICELLUS Interacts with the SWI2/SNF2 Chromatin Remodeling ATPase BRAHMA to Regulate and Expression in Control of Inflorescence Architecture
- Seizures Are Regulated by Ubiquitin-specific Peptidase 9 X-linked (USP9X), a De-Ubiquitinase
- The Fun30 Chromatin Remodeler Fft3 Controls Nuclear Organization and Chromatin Structure of Insulators and Subtelomeres in Fission Yeast
- A Cascade of Iron-Containing Proteins Governs the Genetic Iron Starvation Response to Promote Iron Uptake and Inhibit Iron Storage in Fission Yeast
- Mutation in MRPS34 Compromises Protein Synthesis and Causes Mitochondrial Dysfunction
- LRGUK-1 Is Required for Basal Body and Manchette Function during Spermatogenesis and Male Fertility
- Cis-Regulatory Mechanisms for Robust Olfactory Sensory Neuron Class-restricted Odorant Receptor Gene Expression in
- Effects on Murine Behavior and Lifespan of Selectively Decreasing Expression of Mutant Huntingtin Allele by Supt4h Knockdown
- HDAC4-Myogenin Axis As an Important Marker of HD-Related Skeletal Muscle Atrophy
- A Conserved Domain in the Scc3 Subunit of Cohesin Mediates the Interaction with Both Mcd1 and the Cohesin Loader Complex
- Selective and Genetic Constraints on Pneumococcal Serotype Switching
- Bacterial Infection Drives the Expression Dynamics of microRNAs and Their isomiRs
- The GATA Factor Regulates . Developmental Timing by Promoting Expression of the Family MicroRNAs
- Accumulation of Glucosylceramide in the Absence of the Beta-Glucosidase GBA2 Alters Cytoskeletal Dynamics
- Reproductive Isolation of Hybrid Populations Driven by Genetic Incompatibilities
- The Contribution of Alu Elements to Mutagenic DNA Double-Strand Break Repair
- Systems Biology of Tissue-Specific Response to Reveals Differentiated Apoptosis in the Tick Vector
- Tfap2a Promotes Specification and Maturation of Neurons in the Inner Ear through Modulation of Bmp, Fgf and Notch Signaling
- The Lysine Acetyltransferase Activator Brpf1 Governs Dentate Gyrus Development through Neural Stem Cells and Progenitors
- PHABULOSA Controls the Quiescent Center-Independent Root Meristem Activities in
- DNA Polymerase ζ-Dependent Lesion Bypass in Is Accompanied by Error-Prone Copying of Long Stretches of Adjacent DNA
- Examining the Evolution of the Regulatory Circuit Controlling Secondary Metabolism and Development in the Fungal Genus
- Zinc Finger Independent Genome-Wide Binding of Sp2 Potentiates Recruitment of Histone-Fold Protein Nf-y Distinguishing It from Sp1 and Sp3
- GAGA Factor Maintains Nucleosome-Free Regions and Has a Role in RNA Polymerase II Recruitment to Promoters
- Neurospora Importin α Is Required for Normal Heterochromatic Formation and DNA Methylation
- Ccr4-Not Regulates RNA Polymerase I Transcription and Couples Nutrient Signaling to the Control of Ribosomal RNA Biogenesis
- Phenotype Specific Analyses Reveal Distinct Regulatory Mechanism for Chronically Activated p53
- A Systems-Level Interrogation Identifies Regulators of Blood Cell Number and Survival
- Morphological Mutations: Lessons from the Cockscomb
- Genetic Interaction Mapping Reveals a Role for the SWI/SNF Nucleosome Remodeler in Spliceosome Activation in Fission Yeast
- The Role of China in the Global Spread of the Current Cholera Pandemic
- The Nuclear Receptor DAF-12 Regulates Nutrient Metabolism and Reproductive Growth in Nematodes
- A Zinc Finger Motif-Containing Protein Is Essential for Chloroplast RNA Editing
- Resistance to Gray Leaf Spot of Maize: Genetic Architecture and Mechanisms Elucidated through Nested Association Mapping and Near-Isogenic Line Analysis
- Small Regulatory RNA-Induced Growth Rate Heterogeneity of
- Mitochondrial Dysfunction Reveals the Role of mRNA Poly(A) Tail Regulation in Oculopharyngeal Muscular Dystrophy Pathogenesis
- Complex Genomic Rearrangements at the Locus Include Triplication and Quadruplication
- Male-Biased Aganglionic Megacolon in the TashT Mouse Line Due to Perturbation of Silencer Elements in a Large Gene Desert of Chromosome 10
- Sex Ratio Meiotic Drive as a Plausible Evolutionary Mechanism for Hybrid Male Sterility
- Tertiary siRNAs Mediate Paramutation in .
- RECG Maintains Plastid and Mitochondrial Genome Stability by Suppressing Extensive Recombination between Short Dispersed Repeats
- Escape from X Inactivation Varies in Mouse Tissues
- Opposite Phenotypes of Muscle Strength and Locomotor Function in Mouse Models of Partial Trisomy and Monosomy 21 for the Proximal Region
- Glycosyl Phosphatidylinositol Anchor Biosynthesis Is Essential for Maintaining Epithelial Integrity during Embryogenesis
- Hyperdiverse Gene Cluster in Snail Host Conveys Resistance to Human Schistosome Parasites
- The Class Homeodomain Factors and Cooperate in . Embryonic Progenitor Cells to Regulate Robust Development
- Recombination between Homologous Chromosomes Induced by Unrepaired UV-Generated DNA Damage Requires Mus81p and Is Suppressed by Mms2p
- Synergistic Interactions between Orthologues of Genes Spanned by Human CNVs Support Multiple-Hit Models of Autism
- Gene Networks Underlying Convergent and Pleiotropic Phenotypes in a Large and Systematically-Phenotyped Cohort with Heterogeneous Developmental Disorders
- The ATM Signaling Cascade Promotes Recombination-Dependent Pachytene Arrest in Mouse Spermatocytes
- Combinatorial Control of Light Induced Chromatin Remodeling and Gene Activation in
- Linking Aβ42-Induced Hyperexcitability to Neurodegeneration, Learning and Motor Deficits, and a Shorter Lifespan in an Alzheimer’s Model
- The Complex Contributions of Genetics and Nutrition to Immunity in
- NatB Domain-Containing CRA-1 Antagonizes Hydrolase ACER-1 Linking Acetyl-CoA Metabolism to the Initiation of Recombination during . Meiosis
- Transcriptomic Profiling of Reveals Reprogramming of the Crp Regulon by Temperature and Uncovers Crp as a Master Regulator of Small RNAs
- Osteopetrorickets due to Snx10 Deficiency in Mice Results from Both Failed Osteoclast Activity and Loss of Gastric Acid-Dependent Calcium Absorption
- A Genomic Portrait of Haplotype Diversity and Signatures of Selection in Indigenous Southern African Populations
- Sequence Features and Transcriptional Stalling within Centromere DNA Promote Establishment of CENP-A Chromatin
- Inhibits Neuromuscular Junction Growth by Downregulating the BMP Receptor Thickveins
- Replicative DNA Polymerase δ but Not ε Proofreads Errors in and in
- Unsaturation of Very-Long-Chain Ceramides Protects Plant from Hypoxia-Induced Damages by Modulating Ethylene Signaling in
- The Small Protein MntS and Exporter MntP Optimize the Intracellular Concentration of Manganese
- A Meta-analysis of Gene Expression Signatures of Blood Pressure and Hypertension
- Pervasive Variation of Transcription Factor Orthologs Contributes to Regulatory Network Evolution
- Network Analyses Reveal Novel Aspects of ALS Pathogenesis
- A Role for the Budding Yeast Separase, Esp1, in Ty1 Element Retrotransposition
- Nab3 Facilitates the Function of the TRAMP Complex in RNA Processing via Recruitment of Rrp6 Independent of Nrd1
- A RecA Protein Surface Required for Activation of DNA Polymerase V
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Clonality and Evolutionary History of Rhabdomyosarcoma
- Morphological Mutations: Lessons from the Cockscomb
- Maternal Filaggrin Mutations Increase the Risk of Atopic Dermatitis in Children: An Effect Independent of Mutation Inheritance
- Transcriptomic Profiling of Reveals Reprogramming of the Crp Regulon by Temperature and Uncovers Crp as a Master Regulator of Small RNAs
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy