#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Complex Contributions of Genetics and Nutrition to Immunity in


Previous studies have indicated that dietary nutrition influences immune defense in a variety of animals, but the mechanistic and genetic basis for that influence is largely unknown. We use the model insect Drosophila melanogaster to conduct an unbiased genome-wide mapping study to identify genes responsible for variation in resistance to bacterial infection after rearing on either high-glucose or low-glucose diets. We find the flies are universally more susceptible to infection when they are reared on the high-glucose diet than when they are reared on the low-glucose diet, and that metabolite levels genetically correlate with quality of immune defense after rearing on the high-glucose diet. We identify several genes that contribute to variation in defense quality on both diets, most of which are not traditionally thought of as part of the immune system. The genetic variation we observe can be important for evolved responses to pathogen pressure, although the effectiveness of natural selection will be partially determined by the host nutritional state.


Vyšlo v časopise: The Complex Contributions of Genetics and Nutrition to Immunity in. PLoS Genet 11(3): e32767. doi:10.1371/journal.pgen.1005030
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005030

Souhrn

Previous studies have indicated that dietary nutrition influences immune defense in a variety of animals, but the mechanistic and genetic basis for that influence is largely unknown. We use the model insect Drosophila melanogaster to conduct an unbiased genome-wide mapping study to identify genes responsible for variation in resistance to bacterial infection after rearing on either high-glucose or low-glucose diets. We find the flies are universally more susceptible to infection when they are reared on the high-glucose diet than when they are reared on the low-glucose diet, and that metabolite levels genetically correlate with quality of immune defense after rearing on the high-glucose diet. We identify several genes that contribute to variation in defense quality on both diets, most of which are not traditionally thought of as part of the immune system. The genetic variation we observe can be important for evolved responses to pathogen pressure, although the effectiveness of natural selection will be partially determined by the host nutritional state.


Zdroje

1. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474: 327–336. doi: 10.1038/nature10213 21677749

2. Moret Y, Schmid-Hempel P (2000) Survival for immunity: the price of immune system activation for bumblebee workers. Science 290: 1166–1168. 11073456

3. Gleeson M, Bishop NC (2000) Elite athlete immunology: importance of nutrition. Int J Sports Med 21 Suppl 1: S44–S50. 10893024

4. Ponton F, Wilson K, Cotter SC, Raubenheimer D, Simpson SJ (2011) Nutritional immunology: a multi-dimensional approach. PLoS Pathog 7: e1002223. doi: 10.1371/journal.ppat.1002223 22144886

5. Cotter SC, Simpson SJ, Raubenheimer D, Wilson K (2010) Macronutrient balance mediates trade-offs between immune function and life history traits. Funct Ecol 25: 186–198. doi: 10.1111/j.1365-2435.2010.01766.x

6. Peck MD, Babcock GF, Alexander JW (1992) The role of protein and calorie restriction in outcome from Salmonella infection in mice. JPEN J Parenter Enteral Nutr 16: 561–565. 1494214

7. Maggini S, Wenzlaff S, Hornig D (2010) Essential role of vitamin C and zinc in child immunity and health. J Int Med Res 38: 386–414. 20515554

8. Fellous S, Lazzaro BP (2010) Larval food quality affects adult (but not larval) immune gene expression independent of effects on general condition. Mol Ecol 19: 1462–1468. doi: 10.1111/j.1365-294X.2010.04567.x 20196811

9. Shingleton AW, Frankino WA, Flatt T, Nijhout HF, Emlen DJ (2007) Size and shape: the developmental regulation of static allometry in insects. Bioessays 29: 536–548. doi: 10.1002/bies.20584 17508394

10. Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47: 817–844. doi: 10.1146/annurev.ento.47.091201.145300 11729092

11. Sentinella AT, Crean AJ, Bonduriansky R (2013) Dietary protein mediates a trade-off between larval survival and the development of male secondary sexual traits. Funct Ecol. 27: 1134–144.

12. Ayres JS, Schneider DS (2009) The role of anorexia in resistance and tolerance to infections in Drosophila. PLoS Biol 7: e1000150. doi: 10.1371/journal.pbio.1000150 19597539

13. Povey S, Cotter SC, Simpson SJ, Lee KP, Wilson K (2009) Can the protein costs of bacterial resistance be offset by altered feeding behaviour? J Anim Ecol 78: 437–446. doi: 10.1111/j.1365-2656.2008.01499.x 19021780

14. Lee KP, Simpson SJ, Clissold FJ, Brooks R, Ballard JWO, et al. (2008) Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proceedings of the National Academy of Sciences 105: 2498–2503. doi: 10.1073/pnas.0710787105 18268352

15. Bruce KD, Hoxha S, Carvalho GB, Yamada R, Wang H-D, et al. (2013) High carbohydrate-low protein consumption maximizes Drosophila lifespan. Exp Gerontol 48: 1129–1135. doi: 10.1016/j.exger.2013.02.003 23403040

16. Ja WW, Carvalho GB, Zid BM, Mak EM, Brummel T, et al. (2009) Water- and nutrient-dependent effects of dietary restriction on Drosophila lifespan. Proceedings of the National Academy of Sciences 106: 18633–18637. doi: 10.1073/pnas.0908016106 19841272

17. Adler MI, Bonduriansky R (2014) Why do the well-fed appear to die young?: a new evolutionary hypothesis for the effect of dietary restriction on lifespan. Bioessays 36: 439–450. doi: 10.1002/bies.201300165 24609969

18. Fanson BG, Taylor PW (2012) Protein:carbohydrate ratios explain life span patterns found in Queensland fruit fly on diets varying in yeast:sugar ratios. Age (Dordr) 34: 1361–1368. doi: 10.1007/s11357-011-9308-3 21904823

19. Lazzaro BP, Sceurman BK, Clark AG (2004) Genetic basis of natural variation in D. melanogaster antibacterial immunity. Science 303: 1873–1876. doi: 10.1126/science.1092447 15031506

20. Miller SI, Ernst RK, Bader MW (2005) LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol 3: 36–46. doi: 10.1038/nrmicro1068 15608698

21. Ogus AC, Yoldas B, Ozdemir T, Uguz A, Olcen S, et al. (2004) The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur Respir J 23: 219–223. 14979495

22. Dalgic N, Tekin D, Kayaalti Z, Soylemezoglu T, Cakir E, et al. (2011) Arg753Gln polymorphism of the human Toll-like receptor 2 gene from infection to disease in pediatric tuberculosis. Hum Immunol 72: 440–445. doi: 10.1016/j.humimm.2011.02.001 21320563

23. Silventoinen K (2003) Determinants of variation in adult body height. J Biosoc Sci 35: 263–285. 12664962

24. Akachi Y, Canning D (2007) The height of women in Sub-Saharan Africa: the role of health, nutrition, and income in childhood. Ann Hum Biol 34: 397–410. doi: 10.1080/03014460701452868 17620149

25. Lazzaro BP, Flores HA, Lorigan JG, Yourth CP (2008) Genotype-by-environment interactions and adaptation to local temperature affect immunity and fecundity in Drosophila melanogaster. PLoS Pathog 4: e1000025. doi: 10.1371/journal.ppat.1000025 18369474

26. Lazzaro BP, Sceurman BK, Clark AG (2004) Genetic basis of natural variation in D. melanogaster antibacterial immunity. Science. 303: 1873–1876. 15031506

27. Lazzaro BP, Sackton TB, Clark AG (2006) Genetic variation in Drosophila melanogaster resistance to infection: a comparison across bacteria. Genetics 174: 1539–1554. doi: 10.1534/genetics.105.054593 16888344

28. Sackton TB, Lazzaro BP, Clark AG (2010) Genotype and gene expression associations with immune function in Drosophila. PLoS Genet 6: e1000797. doi: 10.1371/journal.pgen.1000797 20066029

29. Kleino A, Silverman N (2014) The Drosophila IMD pathway in the activation of the humoral immune response. Dev Comp Immunol 42: 25–35. doi: 10.1016/j.dci.2013.05.014 23721820

30. Lindsay SA, Wasserman SA (2014) Conventional and non-conventional Drosophila Toll signaling. Dev Comp Immunol 42: 16–24. doi: 10.1016/j.dci.2013.04.011 23632253

31. Reed LK, Williams S, Springston M, Brown J, Freeman K, et al. (2010) Genotype-by-diet interactions drive metabolic phenotype variation in Drosophila melanogaster. Genetics 185: 1009–1019. doi: 10.1534/genetics.109.113571 20385784

32. Dionne MS, Pham LN, Shirasu-Hiza M, Schneider DS (2006) Akt and FOXO dysregulation contribute to infection-induced wasting in Drosophila. Curr Biol 16: 1977–1985. doi: 10.1016/j.cub.2006.08.052 17055976

33. Libert S, Chao Y, Zwiener J, Pletcher SD (2008) Realized immune response is enhanced in long-lived puc and chico mutants but is unaffected by dietary restriction. Mol Immunol 45: 810–817. doi: 10.1016/j.molimm.2007.06.353 17681604

34. DiAngelo JR, Bland ML, Bambina S, Cherry S, Birnbaum MJ (2009) The immune response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling. Proceedings of the National Academy of Sciences 106: 20853–20858. doi: 10.1073/pnas.0906749106 19861550

35. Brown AE, Baumbach J, Cook PE, Ligoxygakis P (2009) Short-term starvation of immune deficient Drosophila improves survival to gram-negative bacterial infections. PLoS ONE 4: e4490. doi: 10.1371/journal.pone.0004490 19221590

36. Becker T, Loch G, Beyer M, Zinke I, Aschenbrenner AC, et al. (2010) FOXO-dependent regulation of innate immune homeostasis. Nature 463: 369–373. doi: 10.1038/nature08698 20090753

37. Chambers MC, Jacobson E, Khalil S, Lazzaro BP (2014) Thorax injury lowers resistance to infection in Drosophila melanogaster. Infect Immun. 82:4380–4389. doi: 10.1128/IAI.02415-14 25092914

38. Howick VM, Lazzaro BP (2014) Genotype and diet shape resistance and tolerance across distinct phases of bacterial infection. BMC Evol Biol 14: 56. doi: 10.1186/1471-2148-14-56 24655914

39. Mackay TFC, Richards S, Stone EA, Barbadilla A, Ayroles JF, et al. (2012) The Drosophila melanogaster Genetic Reference Panel. Nature 482: 173–178. doi: 10.1038/nature10811 22318601

40. Teixeira L, Ferreira Á, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6:e1000002.

41. Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science. 322:702. doi: 10.1126/science.1162418 18974344

42. Wong ZS, Hedges LM, Brownlie JC, Johnson KN (2011) Wolbachia-mediated antibacterial protection and immune gene regulation in Drosophila. PLoS ONE 6: e25430. doi: 10.1371/journal.pone.0025430 21980455

43. Rottschaefer SM, Lazzaro BP (2012) No effect of Wolbachia on resistance to intracellular infection by pathogenic bacteria in Drosophila melanogaster. PLoS ONE 7: e40500. doi: 10.1371/journal.pone.0040500 22808174

44. Richardson MF, Weinert LA, Welch JJ, Linheiro RS, Magwire MM, et al. (2012) Population genomics of the Wolbachia endosymbiont in Drosophila melanogaster. PLoS Genet 8: e1003129. doi: 10.1371/journal.pgen.1003129 23284297

45. Celniker SE, Dillon LAL, Gerstein MB, Gunsalus KC, Henikoff S, et al. (2009) Unlocking the secrets of the genome. Nature 459: 927–930. Available: http://www.nature.com/doifinder/10.1038/459927a. doi: 10.1038/459927a 19536255

46. Huang W, Massouras A, Inoue Y, Peiffer J, Ràmia M, et al. (2014) Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines. Genome Research 24: 1193–1208. doi: 10.1101/gr.171546.113 24714809

47. Kofler R, Schlötterer C (2012) Gowinda: unbiased analysis of gene set enrichment for genome-wide association studies. Bioinformatics 28: 2084–2085. doi: 10.1093/bioinformatics/bts315 22635606

48. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, et al. (2000) The genome sequence of Drosophila melanogaster. Science 287: 2185–2195. 10731132

49. Unckless RL, Rottschaefer SM, Lazzaro BP (2015) A Genome-Wide Association Study for Nutritional Indices in Drosophila. G3: Genes|Genomes|Genetics. doi: 10.1534/g3.114.016477

50. Wicker C, Reichhart JM, Hoffmann D, Hultmark D, Samakovlis C, et al. (1990) Insect immunity. Characterization of a Drosophila cDNA encoding a novel member of the diptericin family of immune peptides. J Biol Chem 265: 22493–22498. 2125051

51. Galac MR, Lazzaro BP (2011) Comparative pathology of bacteria in the genus Providencia to a natural host, Drosophila melanogaster. Microbes and Infection: 1–11. doi: 10.1016/j.micinf.2011.02.005 21907304

52. Tzou P, Ohresser S, Ferrandon D, Capovilla M, Reichhart JM, et al. (2000) Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13: 737–748. 11114385

53. Marygold SJ, Leyland PC, Seal RL, Goodman JL, Thurmond J, et al. (2013) FlyBase: improvements to the bibliography. Nucleic Acids Research 41: D751–D757. doi: 10.1093/nar/gks1024 23125371

54. Momota R, Naito I, Ninomiya Y, Ohtsuka A (2011) Drosophila type XV/XVIII collagen, Mp, is involved in Wingless distribution. Matrix Biol 30: 258–266. doi: 10.1016/j.matbio.2011.03.008 21477650

55. Nakamura M, Baldwin D, Hannaford S, Palka J, Montell C (2002) Defective proboscis extension response (DPR), a member of the Ig superfamily required for the gustatory response to salt. J Neurosci 22: 3463–3472. 11978823

56. Zhou Y, Gunput R-AF, Pasterkamp RJ (2008) Semaphorin signaling: progress made and promises ahead. Trends Biochem Sci 33: 161–170. doi: 10.1016/j.tibs.2008.01.006 18374575

57. Valanne S, Myllymäki H, Kallio J, Schmid MR, Kleino A, et al. (2010) Genome-wide RNA interference in Drosophila cells identifies G protein-coupled receptor kinase 2 as a conserved regulator of NF-kappaB signaling. J Immunol 184: 6188–6198. doi: 10.4049/jimmunol.1000261 20421637

58. Blandin S, Levashina EA (2004) Thioester-containing proteins and insect immunity. Mol Immunol 40: 903–908. 14698229

59. Jiggins FM, Kim K-W (2006) Contrasting evolutionary patterns in Drosophila immune receptors. J Mol Evol 63: 769–780. doi: 10.1007/s00239-006-0005-2 17103056

60. Williams MJ (2009) The c-src homologue Src64B is sufficient to activate the Drosophila cellular immune response. J Innate Immun 1: 335–339. doi: 10.1159/000191216 20375590

61. Krauchunas AR, Horner VL, Wolfner MF (2012) Protein phosphorylation changes reveal new candidates in the regulation of egg activation and early embryogenesis in D. melanogaster. Dev Biol 370: 125–134. doi: 10.1016/j.ydbio.2012.07.024 22884528

62. Short SM, Lazzaro BP (2013) Reproductive status alters transcriptomic response to infection in female Drosophila melanogaster. G3: Genes|Genomes|Genetics 3: 827–840. doi: 10.1534/g3.112.005306

63. Jin LH, Shim J, Yoon JS, Kim B, Kim J, et al. (2008) Identification and functional analysis of antifungal immune response genes in Drosophila. PLoS Pathog 4: e1000168. doi: 10.1371/journal.ppat.1000168 18833296

64. Ayroles JF, Carbone MA, Stone EA, Jordan KW, Lyman RF, et al. (2009) Systems genetics of complex traits in Drosophila melanogaster. Nat Genet 41: 299–307. doi: 10.1038/ng.332 19234471

65. Bourtzis K, Pettigrew MM, O’Neill SL (2000) Wolbachia neither induces nor suppresses transcripts encoding antimicrobial peptides. Insect Mol Biol. 9:635–639. 11122472

66. Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I, et al. (2009) Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 5: e1000368. doi: 10.1371/journal.ppat.1000368 19343208

67. Ikeya T, Broughton S, Alic N, Grandison R, Partridge L (2009) The endosymbiont Wolbachia increases insulin/IGF-like signalling in Drosophila. Proc Biol Sci 276: 3799–3807. doi: 10.1098/rspb.2009.0778 19692410

68. Juneja P, Lazzaro BP (2009) Providencia sneebia sp. nov. and Providencia burhodogranariea sp. nov., isolated from wild Drosophila melanogaster. Int J Syst Evol Microbiol 59: 1108–1111. doi: 10.1099/ijs.0.000117-0 19406801

69. Ridley EV, Wong AC-N, Westmiller S, Douglas AE (2012) Impact of the Resident Microbiota on the Nutritional Phenotype of Drosophila melanogaster. PLoS ONE 7: e36765. doi: 10.1371/journal.pone.0036765 22586494

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#