#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Effects on Murine Behavior and Lifespan of Selectively Decreasing Expression of Mutant Huntingtin Allele by Supt4h Knockdown


Huntington’s disease (HD) is an inherited genetic disorder that leads to degeneration of brain cells and consequently to abnormal body movements, decreased mental capacity, and death. It is one of a group of untreatable degenerative neurological and neuromuscular diseases caused by expansion of gene segments containing multiple tandemly arrayed copies of short DNA sequences called trinucleotide repeats (TNRs). We report here that interference with production of a protein, SUPT4H, that is differentially needed for transcription through mutant Htt genes containing expanded TNRs reduces synthesis of abnormal Htt messenger RNA and protein, decreases HTT aggregates in murine brains, delays the occurrence of pathological features of HD, and prolongs HD mouse lifespan. Our results suggest that targeting of SUPT4H may be of value in the treatment of HD.


Vyšlo v časopise: Effects on Murine Behavior and Lifespan of Selectively Decreasing Expression of Mutant Huntingtin Allele by Supt4h Knockdown. PLoS Genet 11(3): e32767. doi:10.1371/journal.pgen.1005043
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005043

Souhrn

Huntington’s disease (HD) is an inherited genetic disorder that leads to degeneration of brain cells and consequently to abnormal body movements, decreased mental capacity, and death. It is one of a group of untreatable degenerative neurological and neuromuscular diseases caused by expansion of gene segments containing multiple tandemly arrayed copies of short DNA sequences called trinucleotide repeats (TNRs). We report here that interference with production of a protein, SUPT4H, that is differentially needed for transcription through mutant Htt genes containing expanded TNRs reduces synthesis of abnormal Htt messenger RNA and protein, decreases HTT aggregates in murine brains, delays the occurrence of pathological features of HD, and prolongs HD mouse lifespan. Our results suggest that targeting of SUPT4H may be of value in the treatment of HD.


Zdroje

1. Ashley CT Jr., Warren ST (1995) Trinucleotide repeat expansion and human disease. Annu Rev Genet 29: 703–728. 8825491

2. Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30: 575–621. 17417937

3. Lopez Castel A, Cleary JD, Pearson CE (2010) Repeat instability as the basis for human diseases and as a potential target for therapy. Nat Rev Mol Cell Biol 11: 165–170. doi: 10.1038/nrm2854 20177394

4. Finkbeiner S (2011) Huntington's Disease. Cold Spring Harb Perspect Biol 3.

5. Group. HsDCR (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 72: 971–983. 8458085

6. Ross CA (2002) Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron 35: 819–822. 12372277

7. Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23: 217–247. 10845064

8. Gatchel JR, Zoghbi HY (2005) Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 6: 743–755. 16205714

9. Cummings CJ, Zoghbi HY (2000) Fourteen and counting: unraveling trinucleotide repeat diseases. Hum Mol Genet 9: 909–916. 10767314

10. Kumari D, Lokanga R, Yudkin D, Zhao XN, Usdin K (2012) Chromatin changes in the development and pathology of the Fragile X-associated disorders and Friedreich ataxia. Biochim Biophys Acta 1819: 802–810. doi: 10.1016/j.bbagrm.2011.12.009 22245581

11. Meola G, Cardani R (2014) Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta.

12. Usdin K, Hayward BE, Kumari D, Lokanga RA, Sciascia N, et al. (2014) Repeat-mediated genetic and epigenetic changes at the FMR1 locus in the Fragile X-related disorders. Front Genet 5: 226. doi: 10.3389/fgene.2014.00226 25101111

13. Liu CR, Chang CR, Chern Y, Wang TH, Hsieh WC, et al. (2012) Spt4 is selectively required for transcription of extended trinucleotide repeats. Cell 148: 690–701. doi: 10.1016/j.cell.2011.12.032 22341442

14. Heikkinen T, Lehtimaki K, Vartiainen N, Puolivali J, Hendricks SJ, et al. (2012) Characterization of neurophysiological and behavioral changes, MRI brain volumetry and 1H MRS in zQ175 knock-in mouse model of Huntington's disease. PLoS One 7: e50717. doi: 10.1371/journal.pone.0050717 23284644

15. Menalled LB, Kudwa AE, Miller S, Fitzpatrick J, Watson-Johnson J, et al. (2012) Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington's disease: zQ175. PLoS One 7: e49838. doi: 10.1371/journal.pone.0049838 23284626

16. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, et al. (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87: 493–506. 8898202

17. Rigo F, Chun SJ, Norris DA, Hung G, Lee S, et al. (2014) Pharmacology of a central nervous system delivered 2'-O-methoxyethyl-modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates. J Pharmacol Exp Ther 350: 46–55. doi: 10.1124/jpet.113.212407 24784568

18. Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, et al. (2012) Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis. Neuron 74: 1031–1044. doi: 10.1016/j.neuron.2012.05.009 22726834

19. Hu J, Matsui M, Gagnon KT, Schwartz JC, Gabillet S, et al. (2009) Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs. Nat Biotechnol 27: 478–484. doi: 10.1038/nbt.1539 19412185

20. Murphy KP, Carter RJ, Lione LA, Mangiarini L, Mahal A, et al. (2000) Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington's disease mutation. J Neurosci 20: 5115–5123. 10864968

21. Meade CA, Deng YP, Fusco FR, Del Mar N, Hersch S, et al. (2002) Cellular localization and development of neuronal intranuclear inclusions in striatal and cortical neurons in R6/2 transgenic mice. J Comp Neurol 449: 241–269. 12115678

22. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, et al. (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36: 585–595. 15146184

23. Wolfgang WJ, Miller TW, Webster JM, Huston JS, Thompson LM, et al. (2005) Suppression of Huntington's disease pathology in Drosophila by human single-chain Fv antibodies. Proc Natl Acad Sci U S A 102: 11563–11568. 16061794

24. Chiang MC, Chen HM, Lai HL, Chen HW, Chou SY, et al. (2009) The A2A adenosine receptor rescues the urea cycle deficiency of Huntington's disease by enhancing the activity of the ubiquitin-proteasome system. Hum Mol Genet 18: 2929–2942. doi: 10.1093/hmg/ddp230 19443488

25. Bibb JA, Yan Z, Svenningsson P, Snyder GL, Pieribone VA, et al. (2000) Severe deficiencies in dopamine signaling in presymptomatic Huntington's disease mice. Proc Natl Acad Sci U S A 97: 6809–6814. 10829080

26. Jin K, LaFevre-Bernt M, Sun Y, Chen S, Gafni J, et al. (2005) FGF-2 promotes neurogenesis and neuroprotection and prolongs survival in a transgenic mouse model of Huntington's disease. Proc Natl Acad Sci U S A 102: 18189–18194. 16326808

27. Carter RJ, Lione LA, Humby T, Mangiarini L, Mahal A, et al. (1999) Characterization of progressive motor deficits in mice transgenic for the human Huntington's disease mutation. J Neurosci 19: 3248–3257. 10191337

28. Hsiao HY, Chiu FL, Chen CM, Wu YR, Chen HM, et al. (2014) Inhibition of soluble tumor necrosis factor is therapeutic in Huntington's disease. Hum Mol Genet 23: 4328–4344. doi: 10.1093/hmg/ddu151 24698979

29. Parsons MA, Sinden RR, Izban MG (1998) Transcriptional properties of RNA polymerase II within triplet repeat-containing DNA from the human myotonic dystrophy and fragile X loci. J Biol Chem 273: 26998–27008. 9756950

30. Gnatt AL, Cramer P, Fu J, Bushnell DA, Kornberg RD (2001) Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science 292: 1876–1882. 11313499

31. Salinas-Rios V, Belotserkovskii BP, Hanawalt PC (2011) DNA slip-outs cause RNA polymerase II arrest in vitro: potential implications for genetic instability. Nucleic Acids Res 39: 7444–7454. doi: 10.1093/nar/gkr429 21666257

32. Guo M, Xu F, Yamada J, Egelhofer T, Gao Y, et al. (2008) Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation. Structure 16: 1649–1658. doi: 10.1016/j.str.2008.08.013 19000817

33. Wenzel S, Martins BM, Rosch P, Wohrl BM (2010) Crystal structure of the human transcription elongation factor DSIF hSpt4 subunit in complex with the hSpt5 dimerization interface. Biochem J 425: 373–380. doi: 10.1042/BJ20091422 19860741

34. Klein BJ, Bose D, Baker KJ, Yusoff ZM, Zhang X, et al. (2011) RNA polymerase and transcription elongation factor Spt4/5 complex structure. Proc Natl Acad Sci U S A 108: 546–550. doi: 10.1073/pnas.1013828108 21187417

35. Martinez-Rucobo FW, Sainsbury S, Cheung AC, Cramer P (2011) Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. EMBO J 30: 1302–1310. doi: 10.1038/emboj.2011.64 21386817

36. Malone EA, Fassler JS, Winston F (1993) Molecular and genetic characterization of SPT4, a gene important for transcription initiation in Saccharomyces cerevisiae. Mol Gen Genet 237: 449–459. 8483459

37. Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington's disease. Physiol Rev 90: 905–981. doi: 10.1152/physrev.00041.2009 20664076

38. Dragatsis I, Levine MS, Zeitlin S (2000) Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat Genet 26: 300–306. 11062468

39. Yu D, Pendergraff H, Liu J, Kordasiewicz HB, Cleveland DW, et al. (2012) Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression. Cell 150: 895–908. doi: 10.1016/j.cell.2012.08.002 22939619

40. Yuan Y, Compton SA, Sobczak K, Stenberg MG, Thornton CA, et al. (2007) Muscleblind-like 1 interacts with RNA hairpins in splicing target and pathogenic RNAs. Nucleic Acids Res 35: 5474–5486. 17702765

41. Mykowska A, Sobczak K, Wojciechowska M, Kozlowski P, Krzyzosiak WJ (2011) CAG repeats mimic CUG repeats in the misregulation of alternative splicing. Nucleic Acids Res 39: 8938–8951. doi: 10.1093/nar/gkr608 21795378

42. Krzyzosiak WJ, Sobczak K, Wojciechowska M, Fiszer A, Mykowska A, et al. (2012) Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target. Nucleic Acids Res 40: 11–26. doi: 10.1093/nar/gkr729 21908410

43. van Bilsen PH, Jaspers L, Lombardi MS, Odekerken JC, Burright EN, et al. (2008) Identification and allele-specific silencing of the mutant huntingtin allele in Huntington's disease patient-derived fibroblasts. Hum Gene Ther 19: 710–719. doi: 10.1089/hum.2007.116 18549309

44. Pfister EL, Kennington L, Straubhaar J, Wagh S, Liu W, et al. (2009) Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington's disease patients. Curr Biol 19: 774–778. doi: 10.1016/j.cub.2009.03.030 19361997

45. Zhang Y, Engelman J, Friedlander RM (2009) Allele-specific silencing of mutant Huntington's disease gene. J Neurochem 108: 82–90. doi: 10.1111/j.1471-4159.2008.05734.x 19094060

46. Southwell AL, Skotte NH, Kordasiewicz HB, Ostergaard ME, Watt AT, et al. (2014) In vivo evaluation of candidate allele-specific mutant huntingtin gene silencing antisense oligonucleotides. Mol Ther.

47. Krauss S, Griesche N, Jastrzebska E, Chen C, Rutschow D, et al. (2013) Translation of HTT mRNA with expanded CAG repeats is regulated by the MID1-PP2A protein complex. Nat Commun 4: 1511. doi: 10.1038/ncomms2514 23443539

48. Lee CY, Cantle JP, Yang XW (2013) Genetic manipulations of mutant huntingtin in mice: new insights into Huntington's disease pathogenesis. FEBS J 280: 4382–4394. doi: 10.1111/febs.12418 23829302

49. Menalled LB, Chesselet MF (2002) Mouse models of Huntington's disease. Trends Pharmacol Sci 23: 32–39. 11804649

50. DeVos SL, Miller TM (2013) Antisense oligonucleotides: treating neurodegeneration at the level of RNA. Neurotherapeutics 10: 486–497. doi: 10.1007/s13311-013-0194-5 23686823

51. Cheng TH, Gartenberg MR (2000) Yeast heterochromatin is a dynamic structure that requires silencers continuously. Genes Dev 14: 452–463. 10691737

52. Li H, Li SH, Cheng AL, Mangiarini L, Bates GP, et al. (1999) Ultrastructural localization and progressive formation of neuropil aggregates in Huntington's disease transgenic mice. Hum Mol Genet 8: 1227–1236. 10369868

53. Di Pardo A, Amico E, Favellato M, Castrataro R, Fucile S, et al. (2014) FTY720 (fingolimod) is a neuroprotective and disease-modifying agent in cellular and mouse models of Huntington disease. Hum Mol Genet 23: 2251–2265. doi: 10.1093/hmg/ddt615 24301680

54. Chiang MC, Chen CM, Lee MR, Chen HW, Chen HM, et al. (2010) Modulation of energy deficiency in Huntington's disease via activation of the peroxisome proliferator-activated receptor gamma. Hum Mol Genet 19: 4043–4058. doi: 10.1093/hmg/ddq322 20668093

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#