#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Phenotype Specific Analyses Reveal Distinct Regulatory Mechanism for Chronically Activated p53


The p53 transcription factor is a frequently mutated tumour suppressor that contributes to repairing or eliminating damaged cells. Levels of p53 are typically regulated through its stability; it is constantly produced and degraded, so that upon stress, p53 is up-regulated quickly. This acutely induced p53 has been used as a major model system for studying genome-wide p53 targets. However, emerging evidence suggests that persistently activated p53 is involved in cancer-associated phenotypes, such as cellular senescence. We investigate genome-wide gene regulation by acutely induced p53 through DNA damage as well as chronically activated p53 in oncogene-induced senescence and pro-apoptotic states. Interestingly, acute and chronic p53 DNA binding profiles are highly distinctive, the latter being preferentially associated with larger and relatively open promoters called CpG islands. Furthermore, our integrative analyses of both p53-dependent gene expression and p53-binding genomic DNA profiles reveal that p53 and many of its targets in chronic conditions form extensive self-regulatory hubs, where they can physically interact. The data not only substantially extend the list of direct p53 targets but highlight unique gene regulation by chronic p53. Finally we show that the cancer-associated lipogenic enzyme, stearoyl-CoA desaturase, is a bona fide p53-repressive target through its CpG island promoter in chronic conditions.


Vyšlo v časopise: Phenotype Specific Analyses Reveal Distinct Regulatory Mechanism for Chronically Activated p53. PLoS Genet 11(3): e32767. doi:10.1371/journal.pgen.1005053
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005053

Souhrn

The p53 transcription factor is a frequently mutated tumour suppressor that contributes to repairing or eliminating damaged cells. Levels of p53 are typically regulated through its stability; it is constantly produced and degraded, so that upon stress, p53 is up-regulated quickly. This acutely induced p53 has been used as a major model system for studying genome-wide p53 targets. However, emerging evidence suggests that persistently activated p53 is involved in cancer-associated phenotypes, such as cellular senescence. We investigate genome-wide gene regulation by acutely induced p53 through DNA damage as well as chronically activated p53 in oncogene-induced senescence and pro-apoptotic states. Interestingly, acute and chronic p53 DNA binding profiles are highly distinctive, the latter being preferentially associated with larger and relatively open promoters called CpG islands. Furthermore, our integrative analyses of both p53-dependent gene expression and p53-binding genomic DNA profiles reveal that p53 and many of its targets in chronic conditions form extensive self-regulatory hubs, where they can physically interact. The data not only substantially extend the list of direct p53 targets but highlight unique gene regulation by chronic p53. Finally we show that the cancer-associated lipogenic enzyme, stearoyl-CoA desaturase, is a bona fide p53-repressive target through its CpG island promoter in chronic conditions.


Zdroje

1. Rivlin N, Brosh R, Oren M, Rotter V (2011) Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes & Cancer 2: 466–474. doi: 10.1177/1947601911408889

2. Kenzelmann-Broz D, Attardi LD (2010) In vivo analysis of p53 tumor suppressor function using genetically engineered mouse models. Carcinogenesis 31: 1311–1318. doi: 10.1093/carcin/bgp331 20097732

3. Itahana K, Dimri GP, Hara E, Itahana Y, Zou Y, et al. (2002) A role for p53 in maintaining and establishing the quiescence growth arrest in human cells. J Biol Chem 277: 18206–18214. doi: 10.1074/jbc.M201028200 11880381

4. Zilfou JT, Lowe SW (2009) Tumor suppressive functions of p53. Cold Spring Harbor Perspectives in Biology 1: a001883. doi: 10.1101/cshperspect.a001883 20066118

5. Vousden KH, Prives C (2009) Blinded by the Light: The Growing Complexity of p53. Cell 137: 413–431. doi: 10.1016/j.cell.2009.04.037 19410540

6. Li T, Kon N, Jiang L, Tan M, Ludwig T, et al. (2012) Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149: 1269–1283. doi: 10.1016/j.cell.2012.04.026 22682249

7. Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, et al. (2004) Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet 36: 147–150. doi: 10.1038/ng1293 14730303

8. Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8: 275–283. doi: 10.1038/nrm2147 17380161

9. Christophorou MA, Ringshausen I, Finch AJ, Swigart LB, Evan GI (2006) The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443: 214–217. doi: 10.1038/nature05077 16957739

10. Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, et al. (2011) Distinct p53 Transcriptional Programs Dictate Acute DNA-Damage Responses and Tumor Suppression. Cell 145: 571–583. doi: 10.1016/j.cell.2011.03.035 21565614

11. Rodier F, Coppe J-P, Patil CK, Hoeijmakers WAM, Muñoz DP, et al. (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11: 973–979. doi: 10.1038/ncb1909 19597488

12. Wei C-L, Wu Q, Vega VB, Chiu KP, Ng P, et al. (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124: 207–219. doi: 10.1016/j.cell.2005.10.043 16413492

13. Kenzelmann Broz D, Spano Mello S, Bieging KT, Jiang D, Dusek RL, et al. (2013) Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev 27: 1016–1031. doi: 10.1101/gad.212282.112 23651856

14. Li M, He Y, Dubois W, Wu X, Shi J, et al. (2012) Distinct Regulatory Mechanisms and Functions for p53-Activated and p53-Repressed DNA Damage Response Genes in Embryonic Stem Cells. Mol Cell 46: 30–42. doi: 10.1016/j.molcel.2012.01.020 22387025

15. Akdemir KC, Jain AK, Allton K, Aronow B, Xu X, et al. (2014) Genome-wide profiling reveals stimulus-specific functions of p53 during differentiation and DNA damage of human embryonic stem cells. Nucleic Acids Res 42: 205–223. doi: 10.1093/nar/gkt866 24078252

16. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602. 9054499

17. Lowe SW, Ruley HE (1993) Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev 7: 535–545. 8384579

18. Narita M, Narita M, Krizhanovsky V, Nũnez S, Chicas A, et al. (2006) A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 126: 503–514. doi: 10.1016/j.cell.2006.05.052 16901784

19. Smeenk L, van Heeringen SJ, Koeppel M, van Driel MA, Bartels SJJ, et al. (2008) Characterization of genome-wide p53-binding sites upon stress response. Nucleic Acids Res 36: 3639–3654. doi: 10.1093/nar/gkn232 18474530

20. Nikulenkov F, Spinnler C, Li H, Tonelli C, Shi Y, et al. (2012) Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis. Cell Death Differ 19: 1992–2002. doi: 10.1038/cdd.2012.89 22790872

21. Botcheva K, McCorkle SR, McCombie WR, Dunn JJ, Anderson CW (2011) Distinct p53 genomic binding patterns in normal and cancer-derived human cells. Cell Cycle 10: 4237–4249. doi: 10.4161/cc.10.24.18383 22127205

22. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25: 1010–1022. doi: 10.1101/gad.2037511 21576262

23. Laptenko O, Beckerman R, Freulich E, Prives (2011) p53 binding to nucleosomes within the p21 promoter in vivo leads to nucleosome loss and transcriptional activation. Proc Natl Acad Sci USA 108: 10385–10390. doi: 10.1073/pnas.1105680108

24. Hon GC, Hawkins RD, Ren B (2009) Predictive chromatin signatures in the mammalian genome. Hum Mol Genet 18: R195–R201. doi: 10.1093/hmg/ddp409 19808796

25. Zhang Q, Zhang J, Jin H, Sheng S (2013) Whole transcriptome sequencing identifies tumor-specific mutations in human oral squamous cell carcinoma. BMC Medical Genomics 6: 28. doi: 10.1186/1755-8794-6-28 24007313

26. Kuang S-Q, Tong W-G, Yang H, Lin W, Lee MK, et al. (2008) Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. Leukemia 22: 1529–1538. doi: 10.1038/leu.2008.130 18528427

27. Cadinanos J, Bradley A (2007) Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res 35: e87–e87. doi: 10.1093/nar/gkm446 17576687

28. Jiang P, Du W, Mancuso A, Wellen KE, Yang X (2013) Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 493: 689–693. doi: 10.1038/nature11776 23334421

29. Oren M, Rotter V (2010) Mutant p53 Gain-of-Function in Cancer. Cold Spring Harbor Perspectives in Biology 2: a001107–a001107. doi: 10.1101/cshperspect.a001107 20182618

30. Kruse J-P, Gu W (2009) Modes of p53 regulation. Cell 137: 609–622. doi: 10.1016/j.cell.2009.04.050 19450511

31. Shedden K, Taylor JMG, Enkemann SA, Tsao M-S, Yeatman TJ, et al. (2008) Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 14: 822–827. doi: 10.1038/nm.1790 18641660

32. Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, et al. (2007) Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13: 3207–3214. doi: 10.1158/1078-0432.CCR-06-2765 17545524

33. Glinsky GV, Glinskii AB, Stephenson AJ, Hoffman RM, Gerald WL (2004) Gene expression profiling predicts clinical outcome of prostate cancer. J Clin Invest 113: 913–923. doi: 10.1172/JCI20032 15067324

34. Abukhdeir AM, Park BH (2008) p21 and p27: roles in carcinogenesis and drug resistance. Expert Rev Mol Med 10: e19. doi: 10.1017/S1462399408000744 18590585

35. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7: 763–777. doi: 10.1038/nrc2222 17882277

36. Igal RA (2010) Stearoyl-CoA desaturase-1: a novel key player in the mechanisms of cell proliferation, programmed cell death and transformation to cancer. Carcinogenesis 31: 1509–1515. doi: 10.1093/carcin/bgq131 20595235

37. Ntambi JM, Miyazaki M (2004) Regulation of stearoyl-CoA desaturases and role in metabolism. Prog Lipid Res 43: 91–104. 14654089

38. Miller LD, Smeds J, George J, Vega VB, Vergara L, et al. (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102: 13550–13555. doi: 10.1073/pnas.0506230102 16141321

39. Pérez-Mancera PA, Rust AG, van der Weyden L, Kristiansen G, Li A, et al. (2012) The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature 486: 266–270. doi: 10.1038/nature11114 22699621

40. Mirza A, Wu Q, Wang L, McClanahan T, Bishop WR, et al. (2003) Global transcriptional program of p53 target genes during the process of apoptosis and cell cycle progression. Oncogene 22: 3645–3654. doi: 10.1038/sj.onc.1206477 12789273

41. Melo CA, Drost J, Wijchers PJ, van de Werken H, de Wit E, et al. (2013) eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell 49: 524–535. doi: 10.1016/j.molcel.2012.11.021 23273978

42. Menendez D, Inga A, Resnick MA (2009) The expanding universe of p53 targets. Nat Rev Cancer 9: 724–737. doi: 10.1038/nrc2730 19776742

43. Menendez D, Krysiak O, Inga A, Krysiak B, Resnick MA, et al. (2006) A SNP in the flt-1 promoter integrates the VEGF system into the p53 transcriptional network. Proc Natl Acad Sci USA 103: 1406–1411. doi: 10.1073/pnas.0508103103 16432214

44. Meek DW, Anderson CW (2009) Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harbor Perspectives in Biology 1: a000950. doi: 10.1101/cshperspect.a000950 20457558

45. Cruickshanks HA, McBryan T, Nelson DM, Vanderkraats ND, Shah PP, et al. (2013) Senescent cells harbour features of the cancer epigenome. Nat Cell Biol 15: 1495–1506. doi: 10.1038/ncb2879 24270890

46. Beckerman R, Prives C (2010) Transcriptional regulation by p53. Cold Spring Harbor Perspectives in Biology 2: a000935. doi: 10.1101/cshperspect.a000935 20679336

47. Sherr CJ (1998) Tumor surveillance via the ARF-p53 pathway. Genes Dev 12: 2984–2991. 9765200

48. Zhang H, Li H, Ho N, Li D, Li S (2012) Scd1 Plays a Tumor-Suppressive Role in Survival of Leukemia Stem Cells and the Development of Chronic Myeloid Leukemia. Molecular and Cellular Biology 32: 1776–1787. doi: 10.1128/MCB.05672-11 22431519

49. Quijano C, Cao L, Fergusson MM, Romero H, Liu J, et al. (2012) Oncogene-induced senescence results in marked metabolic and bioenergetic alterations. Cell Cycle 11: 1383–1392. doi: 10.4161/cc.19800 22421146

50. Dörr JR, Yu Y, Milanovic M, Beuster G, Zasada C, et al. (2013) Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501: 421–425. doi: 10.1038/nature12437 23945590

51. D’Erchia AM, Tullo A, Lefkimmiatis K, Saccone C, Sbisà E (2006) The fatty acid synthase gene is a conserved p53 family target from worm to human. Cell Cycle 5: 750–758. 16582625

52. Yahagi N, Shimano H, Matsuzaka T, Najima Y, Sekiya M, et al. (2003) p53 Activation in adipocytes of obese mice. J Biol Chem 278: 25395–25400. doi: 10.1074/jbc.M302364200 12734185

53. Freed-Pastor WA, Mizuno H, Zhao X, Langerød A, Moon S-H, et al. (2012) Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148: 244–258. doi: 10.1016/j.cell.2011.12.017 22265415

54. Chandra T, Kirschner K, Thuret J-Y, Pope BD, Ryba T, et al. (2012) Independence of Repressive Histone Marks and Chromatin Compaction during Senescent Heterochromatic Layer Formation. Mol Cell 47: 203–214. doi: 10.1016/j.molcel.2012.06.010 22795131

55. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, et al. (2001) Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15: 3243–3248. doi: 10.1101/gad.943001 11751630

56. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, et al. (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4: 437–450. 14706336

57. Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A (2000) Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 14: 994–1004. 10783170

58. Wang W, Lin C, Lu D, Ning Z, Cox T, et al. (2008) Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci USA 105: 9290–9295. doi: 10.1073/pnas.0801017105 18579772

59. Loew R, Heinz N, Hampf M, Bujard H, Gossen M (2010) Improved Tet-responsive promoters with minimized background expression. BMC Biotechnol 10: 81. doi: 10.1186/1472-6750-10-81 21106052

60. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80. doi: 10.1186/gb-2004-5-10-r80 15461798

61. Cairns JM, Dunning MJ, Ritchie ME, Russell R, Lynch AG (2008) BASH: a tool for managing BeadArray spatial artefacts. Bioinformatics 24: 2921–2922. doi: 10.1093/bioinformatics/btn557 18953044

62. Dunning MJ, Smith ML, Ritchie ME, Tavaré S (2007) beadarray: R classes and methods for Illumina bead-based data. Bioinformatics 23: 2183–2184. doi: 10.1093/bioinformatics/btm311 17586828

63. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3. doi: 10.2202/1544-6115.1027

64. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489: 57–74. doi: 10.1038/nature11247 22955616

65. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, et al. (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9: R137. doi: 10.1186/gb-2008-9-9-r137 18798982

66. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, et al. (2011) Integrative genomics viewer. Nat Biotechnol 29: 24–26. doi: 10.1038/nbt.1754 21221095

67. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26: 589–595. doi: 10.1093/bioinformatics/btp698 20080505

68. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, et al. (2010) GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 28: 495–501. doi: 10.1038/nbt.1630 20436461

69. Hardcastle TJ, Kelly KA (2010) baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11: 422. doi: 10.1186/1471-2105-11-422 20698981

70. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57. doi: 10.1038/nprot.2008.211 19131956

71. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, et al. (1999) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 27: 29–34. 9847135

72. Vastrik I, D’Eustachio P, Schmidt E, Joshi-Tope G, Gopinath G, et al. (2007) Reactome: a knowledge base of biologic pathways and processes. Genome Biol 8: R39. doi: 10.1186/gb-2007-8-3-r39 17367534

73. Kelder T, van Iersel MP, Hanspers K, Kutmon M, Conklin BR, et al. (2012) WikiPathways: building research communities on biological pathways. Nucleic Acids Res 40: D1301–D1307. doi: 10.1093/nar/gkr1074 22096230

74. Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, et al. (2011) Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res 39: D685–D690. doi: 10.1093/nar/gkq1039 21071392

75. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, et al. (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13: 2129–2141. doi: 10.1101/gr.772403 12952881

76. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, et al. (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134: 112–123. doi: 10.1016/j.cell.2008.06.016 18614015

77. Chatr-aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, et al. (2012) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41: D816–D823. doi: 10.1093/nar/gks1158 23203989

78. Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, et al. (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40: D841–D846. doi: 10.1093/nar/gkr1088 22121220

79. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, et al. (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41: D808–D815. doi: 10.1093/nar/gks1094 23203871

80. Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27: 431–432. doi: 10.1093/bioinformatics/btq675 21149340

81. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, et al. (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19: 1639–1645. doi: 10.1101/gr.092759.109 19541911

82. Kel AE, Gössling E, Reuter I, Cheremushkin E, Kel-Margoulis OV, et al. (2003) MATCH: A tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res 31: 3576–3579. 12824369

83. Machanick P, Bailey TL (2011) MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27: 1696–1697. doi: 10.1093/bioinformatics/btr189 21486936

84. Zambelli F, Pesole G, Pavesi G (2013) PscanChIP: Finding over-represented transcription factor-binding site motifs and their correlations in sequences from ChIP-Seq experiments. Nucleic Acids Res 41: W535–W543. doi: 10.1093/nar/gkt448 23748563

85. Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, et al. (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34: D108–D110. doi: 10.1093/nar/gkj143 16381825

86. Meyer LR, Zweig AS, Hinrichs AS, Karolchik D, Kuhn RM, et al. (2013) The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res 41: D64–D69. doi: 10.1093/nar/gks1048 23155063

87. Zhang Z, Chang CW, Goh WL, Sung W-K, Cheung E (2011) CENTDIST: discovery of co-associated factors by motif distribution. Nucleic Acids Res 39: W391–W399. doi: 10.1093/nar/gkr387 21602269

88. Zambelli F, Pesole G, Pavesi G (2009) Pscan: finding over-represented transcription factor binding site motifs in sequences from co-regulated or co-expressed genes. Nucleic Acids Res 37: W247–252. doi: 10.1093/nar/gkp464 19487240

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#