-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Trans-generational Immune Priming Protects the Eggs Only against Gram-Positive Bacteria in the Mealworm Beetle
In some insects, the immunological experience of mothers is transferred to their otherwise naïve offspring, protecting them against infection. Such a maternal effect has likely evolved from selective pressure imposed by the persistence of some microbial pathogens in the environment between insect generations. If microbes are not transmitted vertically from mother to the offspring, only those able to survive in the external environment have the highest probability to infect the offspring. Therefore, early levels of immune protection transferred by mothers to their offspring might be specific of these microbes. In this study, we found that enhanced levels of antimicrobial activity in the eggs of immune challenged females of the mealworm beetle, Tenebrio molitor, were only active against Gram-positive bacteria, whatever the microorganism used for the maternal challenge. Furthermore, immune challenged females with fungi rarely transferred antimicrobial activity to their eggs. The analysis of the proteins conferring antibacterial activity in the eggs of bacterially immune-challenged mothers revealed the presence of tenecin 1, an antibacterial peptide active against Gram-positive bacteria only. These results suggest that maternal transfer of antimicrobial activity in the eggs in T. molitor might have evolved from the persistence of Gram-positive bacterial pathogens between insect generations.
Vyšlo v časopise: Trans-generational Immune Priming Protects the Eggs Only against Gram-Positive Bacteria in the Mealworm Beetle. PLoS Pathog 11(10): e32767. doi:10.1371/journal.ppat.1005178
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1005178Souhrn
In some insects, the immunological experience of mothers is transferred to their otherwise naïve offspring, protecting them against infection. Such a maternal effect has likely evolved from selective pressure imposed by the persistence of some microbial pathogens in the environment between insect generations. If microbes are not transmitted vertically from mother to the offspring, only those able to survive in the external environment have the highest probability to infect the offspring. Therefore, early levels of immune protection transferred by mothers to their offspring might be specific of these microbes. In this study, we found that enhanced levels of antimicrobial activity in the eggs of immune challenged females of the mealworm beetle, Tenebrio molitor, were only active against Gram-positive bacteria, whatever the microorganism used for the maternal challenge. Furthermore, immune challenged females with fungi rarely transferred antimicrobial activity to their eggs. The analysis of the proteins conferring antibacterial activity in the eggs of bacterially immune-challenged mothers revealed the presence of tenecin 1, an antibacterial peptide active against Gram-positive bacteria only. These results suggest that maternal transfer of antimicrobial activity in the eggs in T. molitor might have evolved from the persistence of Gram-positive bacterial pathogens between insect generations.
Zdroje
1. Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13 : 403–407. 21238360
2. Boulinier T, Staszewski V (2007) Maternal transfer of antibodies: raising immuno-ecology issues. Trends Ecol Evol 23 : 282–288.
3. Grindstaff JL, Brodie ED, Ketterson ED (2003) Immune function across generations: integrating mechanism and evolutionary process in maternal antibody transmission. Proc Biol Sci 270 : 2309–2319. 14667346
4. Hasselquist D, Nilsson JA (2009) Maternal transfer of antibodies in vertebrates: trans-generational effects on offspring immunity. Philos Trans R Soc Lond B Biol Sci 364 : 51–60. doi: 10.1098/rstb.2008.0137 18926976
5. Schmid-Hempel P (2005) Natural insect host-parasite systems show immune priming and specificity: puzzles to be solved. BioEssays 27 : 1026–1034. 16163710
6. Huang CC, Song YL (1999) Maternal transmission of immunity to white spot syndrome associated virus (WSSV) in shrimp (Penaeus monodon). Dev Comp Immunol 23 : 545–552. 10579383
7. Little TJ, O'Connor B, Colegrave N, Watt K., Read AF (2003) Maternal Transfer of Strain-Specific Immunity in an Invertebrate. Curr Biol 13 : 489–492. 12646131
8. Sadd BM, Kelinlogel Y, Schmid-Hempel R, Schmid-Hempel P (2005) Trans-generational immune priming in a social insect. Biol Lett 1 : 386–388. 17148213
9. Moret Y (2006) "Trans-generational immune priming": specific enhancement of the antimicrobial immune response in the mealworm beetle, Tenebrio molitor. Proc R Soc B 273 : 1399–1405. 16777729
10. Sadd BM, Schmid-Hempel P (2007) Facultative but persistent trans-generational immunity via the mother's eggs in bumblebees. Curr Biol 17: R1046–1047. 18088585
11. Freitak D, Heckel DG, Vogel H (2009) Dietary-dependent trans-generational immune priming in an insect herbivore. Proc R Soc B 276 : 2617–2624. doi: 10.1098/rspb.2009.0323 19369263
12. Sadd BM, Schmid-Hempel P (2009) A distinct infection cost associated with trans-generational priming of antibacterial immunity in bumble-bees. Biol Lett 5 : 798–801. doi: 10.1098/rsbl.2009.0458 19605389
13. Roth O, Joop G, Eggert H, Hilbert J, Daniel J, Schmid-Hempel P, Kurtz J (2010) Paternally derived immune priming for offspring in the red flour beetle, Tribolium castaneum. J Anim Ecol 79 : 403–413. doi: 10.1111/j.1365-2656.2009.01617.x 19840170
14. Tidbury HJ, Pedersen AB, Boots M (2010) Within and transgenerational immune priming in an insect to a DNA virus. Proc Biol Sci 278 : 871–876. doi: 10.1098/rspb.2010.1517 20861049
15. Zanchi C, Troussard J-P, Martinaud G, Moreau J, Moret Y (2011) Differential expression and costs between maternally and paternally derived immune priming for offspring in an insect. J Anim Ecol 80 : 1174–1183. doi: 10.1111/j.1365-2656.2011.01872.x 21644979
16. Moreau J, Martinaud G, Troussard J-P, Zanchi C, Moret Y (2012) Trans-generational immune priming is constrained by the maternal immune response in an insect. Oikos 121 : 1828–1832.
17. Zanchi C, Troussard JP, Moreau J, Moret Y (2012) Relationship between maternal transfer of immunity and mother fecundity in an insect. Proc R Soc B 279 : 3223–3230. doi: 10.1098/rspb.2012.0493 22535782
18. Trauer U, Hilker M (2013) Parental legacy in insects: variation of transgenerational immune priming during offspring development. PLoS One 8: e63392. doi: 10.1371/journal.pone.0063392 23700423
19. López JH, Schuehly W, Craisheim K, Riessberger-Gallé U (2014) Trans-generational immune priming in honeybees. Proc R Soc B 281 : 20140454. doi: 10.1098/rspb.2014.0454 24789904
20. Natori S, Shiraishi H, Hori S, Kobayashi A (1999) The roles of Sarcophaga defense molecules in immunity and metamorphosis. Dev Comp Immunol 23 : 317–328. 10426425
21. Meylaers K, Freitak D, Schoofs L (2007) Immunocompetence of Galleria. mellonella: sex - and stage-specific differences and the physiological cost of mounting an immune response during metamorphosis. J Insect Physiol 53 : 146–156. 17198709
22. Eleftherianos I, Baldwin H, ffrench-Constant RH, Reynolds SE (2008) Developmental modulation of immunity: changes within the feeding period of the fifth larval stage in the defence reactions of Manduca sexta to infection by Photorhabdus. J Insect Physiol 54 : 309–318. 18001766
23. Laughton AM, Boots M, Siva-Jothy MT (2011) The ontogeny of immunity in the honey bee, Apis mellifera L. following an immune challenge. J Insect physiol 57 : 1023–1032. doi: 10.1016/j.jinsphys.2011.04.020 21570403
24. Bulet P, Stocklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12 : 3–11. 15638797
25. Gorman MJ, Kankanala P, Kanost MR (2004) Bacterial challenge stimulates innate immune responses in extra-embryonic tissues of tobacco hornworm eggs. Insect Mol Biol 13 : 19–24. 14728663
26. Jacobs CGC, van der Zee M (2013) Immune competence in insect eggs depends on the extraembryonic serosa. Dev Comp Immunol 41 : 263–269. doi: 10.1016/j.dci.2013.05.017 23732406
27. Haine ER, Pollitt LC, Moret Y, Siva-Jothy MT, Rolff J (2008) Temporal patterns in immune responses to a range of microbial insults (Tenebrio molitor). J Insect Physiol 54 : 1090–1097. doi: 10.1016/j.jinsphys.2008.04.013 18513740
28. Tingvall T, Roos E, Engstrom Y (2001) The GATA factor Serpent is required for the onset of the humoral immune response in Drosophila embryos. Proc Natl Acad Sci U S A 98 : 3884–3888. 11274409
29. Freitak D, Schmidtberg H, Dickel F, Lochnit G, Vogel H, Vilcinskas A (2014) The maternal transfer of bacteria can mediate trans-generational immune priming in insects. Virulence 5 : 547–554. doi: 10.4161/viru.28367 24603099
30. Moret Y, Schmid-Hempel P (2000) Survival for immunity: The price of immune system activation for bumblebee workers. Science 290 : 1166–1168. 11073456
31. Lee KH, Hong SY, Oh JE, Kwon MY, Yoon JH, Lee JH, Lees BL, Moon HM (1998) Identification and characterization of the antimicrobial peptide corresponding to C-terminal beta-sheet domain of tenecin 1, an antibacterial protein of larvae of Tenebrio molitor. Biochem J 334 : 99–105. 9693108
32. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36 : 407–477. 4568761
33. Broderick NA, Lemaitre B (2009) Recognition and response to microbial infection in Drosophila. In: Rolff J, Reynolds S, editors. Insect Infection and Immunity: Evolution, Ecology, and Mechanisms. Oxford: Oxford University Press. pp. 13–33.
34. Lehrer RI, Rosenman M, Harwig SSSL, Jackson R, Eisenhauer P (1991) Ultrasensitive assays for endogenous antimicrobial polypeptides. J Immunol Meth 137 : 167–173.
35. Schagger H, Vonjagow G (1987) Tricine Sodium Dodecyl-Sulfate polyacrylamide-gel electrophoresis for the separation of proteins in the range from 1-KDa to 100-KDa. Anal Biochem 166 : 368–379. 2449095
36. Fraune S, Augustin R, Anton-Erxleben F, Wittlieb J, Gelhaus C, Klimovich VB, Samoilovich MP, Bosch TC (2011) In an early branching metazoan, bacterial colonization of the embryo is controlled by maternal antimicrobial peptides. Proc Natl Acad Sci U S A 107 : 18067–18072.
37. Zhang S, Wang Z, Wang H (2013) Maternal immunity in fish. Dev Comp Immunol 39 : 72–78. doi: 10.1016/j.dci.2012.02.009 22387589
38. Baron OL, van West P, Industri B, Ponchet M, Dubreuil G, Gourbal B, Reichhart J-M, Coustau C (2013) Parental transfer of the antimicrobial protein LBP/BPI protects Biomphalaria glabrata eggs against oomycete infections. PLoS Pathog 9: e1003792. doi: 10.1371/journal.ppat.1003792 24367257
39. Yu Y, Park JW, Kwon HM, Hwang HO, Jang IH, Masuda A, Kurokawa K, Nakayama H, Lee WJ, Dohmae N, et al. (2010) Diversity of innate immune recognition mechanism for bacterial polymeric meso-diaminopimelic acid-type peptidoglycan in insects. J Biol Chem 285 : 32937–32945. doi: 10.1074/jbc.M110.144014 20702416
40. Ferrari J, Vavre F (2011) Bacterial symbionts in insects or the story of communities affecting communities. Phil Trans R Soc B 366 : 1389–1400. doi: 10.1098/rstb.2010.0226 21444313
41. Lord JC, Hartzer KL, Kambhampati S (2012) A nuptially transmitted ichthyosporean symbiont of Tenebrio molitor (Coleoptera: Tenebrionidae). J Eukaryot Microbiol 59 : 246–250. doi: 10.1111/j.1550-7408.2012.00617.x 22510059
42. Lord JC (2009) Beauvaria bassiana infection of eggs of stored-product beetles. Entomol Res 39 : 155–157.
43. Jacobs CGC, Wang Y, Vogel H, Vilcinskas A, van der Zee M, Rozen DE (2014) Egg survival is reduced by grave-soil microbes in the carrion beetle, Nicrophorus vespilloides. BMC Evol Biol 14 : 208. doi: 10.1186/s12862-014-0208-x 25260512
44. Du Rand N, Laing MD (2011) Determination of insecticidal toxicity of three species of entomopathogenic spore-forming bacterial isolates against Tenebrio molitor L. (Coleoptera: Tenebrionidae) Afr J Microbiol Res 5 : 2222–2228.
45. Jurat-Fuentes JL, Jackson T. Bacterial Entomopathogens. In: Kaya H, Vera F, editors. Insect Pathology, 2nd Edition, Elsevier, 2012.
46. Meyling NV, Pell JK (2006) Detection and avoidance of an entomopathogenic fungus by a generalist insect predator. Ecol Entomol 31 : 162–171.
47. Dyballa N, Metzger S (2009) Fast and sensitive colloidal coomassie G-250 staining for proteins in polyacrylamide gels. J Vis Exp (30).
48. Cummings G, Finch S (2005) Inference by the eye: How to read pictures of your data. Am Psychol 60 : 170–180. 15740449
49. R Development Core Team (2011) R: A language and environment for statistical computing. Vienna, Austria, R foundation for statistical computing.
50. Bates D, Maechler M (2010) lme4: linear mixed-effects models using S4 classes. In R package version 10–6 http://CRANR-projectorg/package=lme4.
51. Dubuffet A, Zanchi C, Boutet G, Moreau J, Moret Y (2015) Data from: Trans-Generational Immune Priming Protect the Eggs only against Gram-positive Bacteria in the Mealworm Beetle. Dryad Digital Repository.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium
Článek TRIM21 Promotes cGAS and RIG-I Sensing of Viral Genomes during Infection by Antibody-Opsonized VirusČlánek Effector OspB Activates mTORC1 in a Manner That Depends on IQGAP1 and Promotes Cell ProliferationČlánek Fundamental Roles of the Golgi-Associated Aspartyl Protease, ASP5, at the Host-Parasite InterfaceČlánek Modulation of the Surface Proteome through Multiple Ubiquitylation Pathways in African Trypanosomes
Článok vyšiel v časopisePLOS Pathogens
Najčítanejšie tento týždeň
2015 Číslo 10- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
-
Všetky články tohto čísla
- Expression of Concern: Misregulation of Underlies the Developmental Abnormalities Caused by Three Distinct Viral Silencing Suppressors in Arabidopsis
- Preparing for the Next Epidemic with Basic Virology
- Effectively Communicating the Uncertainties Surrounding Ebola Virus Transmission
- Translating Basic Research into Clinical Applications: Malaria Research at an NIH Lab
- A Gut Odyssey: The Impact of the Microbiota on Spore Formation and Germination
- Papillomavirus E6 Oncoproteins Take Common Structural Approaches to Solve Different Biological Problems
- Chronobiomics: The Biological Clock as a New Principle in Host–Microbial Interactions
- Dimensions of Horizontal Gene Transfer in Eukaryotic Microbial Pathogens
- Addressing the Complications of Ebola and Other Viral Hemorrhagic Fever Infections: Using Insights from Bacterial and Fungal Sepsis
- Time for Chocolate: Current Understanding and New Perspectives on Cacao Witches’ Broom Disease Research
- Ganglioside and Non-ganglioside Mediated Host Responses to the Mouse Polyomavirus
- Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins
- Structure Elucidation of Coxsackievirus A16 in Complex with GPP3 Informs a Systematic Review of Highly Potent Capsid Binders to Enteroviruses
- CD39 Expression Identifies Terminally Exhausted CD8 T Cells
- Abiotic Stresses Antagonize the Rice Defence Pathway through the Tyrosine-Dephosphorylation of OsMPK6
- Dissociation of Tissue Destruction and Bacterial Expansion during Bubonic Plague
- Interferon-γ: The Jekyll and Hyde of Malaria
- CCR2 Inflammatory Dendritic Cells and Translocation of Antigen by Type III Secretion Are Required for the Exceptionally Large CD8 T Cell Response to the Protective YopE Epitope during Infection
- A New Glycan-Dependent CD4-Binding Site Neutralizing Antibody Exerts Pressure on HIV-1
- The Suramin Derivative NF449 Interacts with the 5-fold Vertex of the Enterovirus A71 Capsid to Prevent Virus Attachment to PSGL-1 and Heparan Sulfate
- Trans-generational Immune Priming Protects the Eggs Only against Gram-Positive Bacteria in the Mealworm Beetle
- Peripheral Vγ9Vδ2 T Cells Are a Novel Reservoir of Latent HIV Infection
- Respiratory Syncytial Virus Disease Is Mediated by Age-Variable IL-33
- TRIM21 Promotes cGAS and RIG-I Sensing of Viral Genomes during Infection by Antibody-Opsonized Virus
- Modeling the Effects of Vorinostat Reveals both Transient and Delayed HIV Transcriptional Activation and Minimal Killing of Latently Infected Cells
- Identification of a Novel Lipoprotein Regulator of Spore Germination
- Calcium Regulation of Hemorrhagic Fever Virus Budding: Mechanistic Implications for Host-Oriented Therapeutic Intervention
- Antigen-Specific Th17 Cells Are Primed by Distinct and Complementary Dendritic Cell Subsets in Oropharyngeal Candidiasis
- Comparative Life Cycle Transcriptomics Revises Genome Annotation and Links a Chromosome Duplication with Parasitism of Vertebrates
- The Autophagy Receptor TAX1BP1 and the Molecular Motor Myosin VI Are Required for Clearance of Salmonella Typhimurium by Autophagy
- Carcinogenic Parasite Secretes Growth Factor That Accelerates Wound Healing and Potentially Promotes Neoplasia
- Effector OspB Activates mTORC1 in a Manner That Depends on IQGAP1 and Promotes Cell Proliferation
- Dengue Virus Infection of Requires a Putative Cysteine Rich Venom Protein
- Distinct Viral and Mutational Spectrum of Endemic Burkitt Lymphoma
- Fundamental Roles of the Golgi-Associated Aspartyl Protease, ASP5, at the Host-Parasite Interface
- Phenotypic and Functional Alterations in Circulating Memory CD8 T Cells with Time after Primary Infection
- Systematic Identification of Cyclic-di-GMP Binding Proteins in Reveals a Novel Class of Cyclic-di-GMP-Binding ATPases Associated with Type II Secretion Systems
- Influenza Transmission in the Mother-Infant Dyad Leads to Severe Disease, Mammary Gland Infection, and Pathogenesis by Regulating Host Responses
- Myeloid Cell Arg1 Inhibits Control of Arthritogenic Alphavirus Infection by Suppressing Antiviral T Cells
- The White-Nose Syndrome Transcriptome: Activation of Anti-fungal Host Responses in Wing Tissue of Hibernating Little Brown Myotis
- Influenza Virus Reassortment Is Enhanced by Semi-infectious Particles but Can Be Suppressed by Defective Interfering Particles
- Identification of the Mechanisms Causing Reversion to Virulence in an Attenuated SARS-CoV for the Design of a Genetically Stable Vaccine
- Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells
- The Histone Acetyltransferase Hat1 Regulates Stress Resistance and Virulence via Distinct Chromatin Assembly Pathways
- C-di-GMP Regulates Motile to Sessile Transition by Modulating MshA Pili Biogenesis and Near-Surface Motility Behavior in
- Modulation of the Surface Proteome through Multiple Ubiquitylation Pathways in African Trypanosomes
- Crystal Structure of the Human Cytomegalovirus Glycoprotein B
- Depletion of . GlmU from Infected Murine Lungs Effects the Clearance of the Pathogen
- Immunologic Control of Papillomavirus Type 1
- Requires Host Rab1b for Survival in Macrophages
- Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi
- PD-L1 Expression on Retrovirus-Infected Cells Mediates Immune Escape from CD8 T Cell Killing
- Phospho-dependent Regulation of SAMHD1 Oligomerisation Couples Catalysis and Restriction
- IL-4 Induced Innate CD8 T Cells Control Persistent Viral Infection
- Crystal Structures of a Piscine Betanodavirus: Mechanisms of Capsid Assembly and Viral Infection
- BCG Skin Infection Triggers IL-1R-MyD88-Dependent Migration of EpCAM CD11b Skin Dendritic cells to Draining Lymph Node During CD4+ T-Cell Priming
- Antigenic Characterization of the HCMV gH/gL/gO and Pentamer Cell Entry Complexes Reveals Binding Sites for Potently Neutralizing Human Antibodies
- Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis
- Geminivirus Activates to Accelerate Cytoplasmic DCP2-Mediated mRNA Turnover and Weakens RNA Silencing in
- Disruption of Sphingolipid Biosynthesis Blocks Phagocytosis of
- The Fungal Exopolysaccharide Galactosaminogalactan Mediates Virulence by Enhancing Resistance to Neutrophil Extracellular Traps
- The Timing of Stimulation and IL-2 Signaling Regulate Secondary CD8 T Cell Responses
- Structural and Functional Analysis of Murine Polyomavirus Capsid Proteins Establish the Determinants of Ligand Recognition and Pathogenicity
- The Dual Role of an ESCRT-0 Component HGS in HBV Transcription and Naked Capsid Secretion
- PLOS Pathogens
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Chronobiomics: The Biological Clock as a New Principle in Host–Microbial Interactions
- Interferon-γ: The Jekyll and Hyde of Malaria
- Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins
- Antigen-Specific Th17 Cells Are Primed by Distinct and Complementary Dendritic Cell Subsets in Oropharyngeal Candidiasis
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy