#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Dissociation of Tissue Destruction and Bacterial Expansion during Bubonic Plague


The hallmark of bubonic plague, a disease that ravaged Medieval Europe and is still prevalent in several countries, is the bubo, a highly inflammatory and painful lymph node, which is characterized by high concentrations of bacteria within a severely damaged organ. Yersinia pestis, the causative agent, expresses a surface protease, Pla, critical to the development of bubonic plague. This multitarget protease has the potential to activate the fibrinolytic pathway and to promote destruction of extracellular protein networks within tissues. Hence, it was expected that Pla was responsible for the tissue destructions of the bubo, and consequently, for bacterial propagation and virulence. However, we found, using various engineered Yersinia strains in a mouse model of bubonic plague, that Pla proteolytic activity was dispensable for lymph node alteration, but was required to achieve high bacterial loads in the organ. Further analysis showed that Pla is essential for preventing the bacteria from being destroyed in the host. Therefore, the role of Pla as a virulence factor is to protect Y. pestis survival and integrity in the host, rather than to assist its spread through tissue destruction.


Vyšlo v časopise: Dissociation of Tissue Destruction and Bacterial Expansion during Bubonic Plague. PLoS Pathog 11(10): e32767. doi:10.1371/journal.ppat.1005222
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1005222

Souhrn

The hallmark of bubonic plague, a disease that ravaged Medieval Europe and is still prevalent in several countries, is the bubo, a highly inflammatory and painful lymph node, which is characterized by high concentrations of bacteria within a severely damaged organ. Yersinia pestis, the causative agent, expresses a surface protease, Pla, critical to the development of bubonic plague. This multitarget protease has the potential to activate the fibrinolytic pathway and to promote destruction of extracellular protein networks within tissues. Hence, it was expected that Pla was responsible for the tissue destructions of the bubo, and consequently, for bacterial propagation and virulence. However, we found, using various engineered Yersinia strains in a mouse model of bubonic plague, that Pla proteolytic activity was dispensable for lymph node alteration, but was required to achieve high bacterial loads in the organ. Further analysis showed that Pla is essential for preventing the bacteria from being destroyed in the host. Therefore, the role of Pla as a virulence factor is to protect Y. pestis survival and integrity in the host, rather than to assist its spread through tissue destruction.


Zdroje

1. (2006) International meeting on preventing and controlling plague: the old calamity still has a future. Wkly Epidemiol Rec 81: 278–284. 16841399

2. Stenseth NC, Atshabar BB, Begon M, Belmain SR, Bertherat E, et al. (2008) Plague: past, present, and future. PLoS Med 5: e3. doi: 10.1371/journal.pmed.0050003 18198939

3. Schrag SJ, Wiener P (1995) Emerging infectious diseases: what are the relative roles of ecology and evolution? Trends Evol Ecol 10: 319–324.

4. Morens DM, Folkers GK, Fauci AS (2004) The challenge of emerging and re-emerging infectious diseases. Nature 430: 242–249. 15241422

5. Pollitzer R (1954) Plague. WHO Monograph Series 22 World Health Organization, Geneva, Switzerland.

6. Perry RD, Fetherston JD (1997) Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev 10: 35–66. 8993858

7. Flexner S (1901) The pathology of bubonic plague. Am J Med Sci 122: 396–416.

8. Crowell BC (1915) Pathologic anatomy of bubonic plague. The Philippine Journal of Science 10 B: 249–307.

9. Smith JH, Reisner BS (1997) Plague. In: Connor DH, editor. Pathology of infectious diseases. Stamford, CT: Prentice-Hall. pp. 729–738.

10. Dennis DT, Meier FA (1997) Plague. In: Horsburgh RC Jr, editor. Pathology of Emerging Infections. Washington, DC: American Society for Microbiology. pp. 21–47.

11. Sebbane F, Gardner D, Long D, Gowen BB, Hinnebusch BJ (2005) Kinetics of disease progression and host response in a rat model of bubonic plague. Am J Pathol 166: 1427–1439. 15855643

12. Herzog M (1904) The Plague, Bacteriology, Morbid Anatomy, and Histopathology. Including a consideration of insects as plague carriers; Laboratories BoG, editor. Manila: Bureau of public printing. 1–149 p.

13. Prentice MB, Rahalison L (2007) Plague. Lancet 369: 1196–1207. 17416264

14. Brubaker RR, Beesley ED, Surgalla MJ (1965) Pasteurella pestis: Role of Pesticin I and Iron in Experimental Plague. Science 149: 422–424. 17809405

15. Welkos SL, Friedlander AM, Davis KJ (1997) Studies on the role of plasminogen activator in systemic infection by virulent Yersinia pestis strain C092. Microb Pathog 23: 211–223. 9344782

16. Guinet F, Ave P, Jones L, Huerre M, Carniel E (2008) Defective Innate Cell Response and Lymph Node Infiltration Specify Yersinia pestis Infection. Plos One 3(2): e1688. doi: 10.1371/journal.pone.0001688 18301765

17. Achtman M, Zurth K, Morelli C, Torrea G, Guiyoule A, et al. (1999) Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 96: 14043–14048. 10570195

18. Smego RA, Frean J, Koornhof HJ (1999) Yersiniosis I: Microbiological and clinicoepidemiological aspects of plague and non-plague Yersinia infections [Review]. Eur J Clin Microbiol Infect Dis 18: 1–15. 10192708

19. Carniel E, Autenrieth I, Cornelis G, Fukushima H, Guinet F, et al. (2006) Y. enterocolitica and Y. pseudotuberculosis; Dworkin MM, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors.

20. Une T, Brubaker RR (1984) In vivo comparison of avirulent Vwa- and Pgm- or Pstr phenotypes of yersiniae. Infect Immun 43: 895–900. 6365786

21. Pouillot F, Derbise A, Kukkonen M, Foulon J, Korhonen TK, et al. (2005) Evaluation of O-antigen inactivation on Pla activity and virulence of Yersinia pseudotuberculosis harbouring the pPla plasmid. Microbiology 151: 3759–3768. 16272397

22. Chain PS, Carniel E, Larimer FW, Lamerdin J, Stoutland PO, et al. (2004) Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 101: 13826–13831. 15358858

23. Sodeinde OA, Subrahmanyam YVBK, Stark K, Quan T, Bao YD, et al. (1992) A surface protease and the invasive character of plague. Science 258: 1004–1007. 1439793

24. Sebbane F, Jarrett CO, Gardner D, Long D, Hinnebusch BJ (2006) Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague. Proc Natl Acad Sci USA 103: 5526–5530. 16567636

25. Lathem WW, Price PA, Miller VL, Goldman WE (2007) A plasminogen-activating protease specifically controls the development of primary pneumonic plague. Science 315: 509–513. 17255510

26. Lahteenmaki K, Kuusela P, Korhonen TK (2001) Bacterial plasminogen activators and receptors [Review]. FEMS Microbiol Rev 25: 531–552. 11742690

27. Kukkonen M, Korhonen TK (2004) The omptin family of enterobacterial surface proteases/adhesins: from housekeeping in Escherichia coli to systemic spread of Yersinia pestis. Int J Med Microbiol 294: 7–14. 15293449

28. Korhonen TK, Haiko J, Laakkonen L, Jarvinen HM, Westerlund-Wikstrom B (2013) Fibrinolytic and coagulative activities of Yersinia pestis. Front Cell Infect Microbiol 3: 35. doi: 10.3389/fcimb.2013.00035 23898467

29. Galvan EM, Lasaro MAS, Schifferli DM (2008) Capsular antigen fraction 1 and pla modulate the susceptibility of Yersinia pestis to pulmonary antimicrobial peptides such as cathelicidin. Infect Immun 76: 1456–1464. doi: 10.1128/IAI.01197-07 18227173

30. Caulfield AJ, Walker ME, Gielda LM, Lathem WW (2014) The Pla protease of Yersinia pestis degrades fas ligand to manipulate host cell death and inflammation. Cell Host Microbe 15: 424–434. doi: 10.1016/j.chom.2014.03.005 24721571

31. Kienle Z, Emody L, Svanborg C, O'Toole PW (1992) Adhesive properties conferred by the plasminogen activator of Yersinia pestis. J Gen Microbiol 138: 1679–1687. 1527508

32. Lahteenmaki K, Virkola R, Saren A, Emody L, Korhonen TK (1998) Expression of plasminogen activator Pla of Yersinia pestis enhances bacterial attachment to the mammalian extracellular matrix. Infect Immun 66: 5755–5762. 9826351

33. Cowan C, Jones HA, Kaya YH, Perry RD, Straley SC (2000) Invasion of epithelial cells by Yersinia pestis: evidence for a Y. pestis-specific invasin. Infect Immun 68: 4523–4530. 10899851

34. Lahteenmaki K, Kukkonen M, Korhonen TK (2001) The Pla surface protease/adhesin of Yersinia pestis mediates bacterial invasion into human endothelial cells. FEBS Lett 504: 69–72. 11522299

35. Zhang SS, Park CG, Zhang P, Bartra SS, Plano GV, et al. (2008) Plasminogen Activator Pla of Yersinia pestis Utilizes Murine DEC-205 (CD205) as a Receptor to Promote Dissemination. J Biol Chem 283: 31511–31521. doi: 10.1074/jbc.M804646200 18650418

36. Felek S, Tsang TM, Krukonis ES (2010) Three Yersinia pestis Adhesins Facilitate Yop Delivery to Eukaryotic Cells and Contribute to Plague Virulence. Infect Immun 78: 4134–4150. doi: 10.1128/IAI.00167-10 20679446

37. Lawrenz MB, Pennington J, Miller VL (2013) Acquisition of omptin reveals cryptic virulence function of autotransporter YapE in Yersinia pestis. Mol Microbiol 89: 276–287. doi: 10.1111/mmi.12273 23701256

38. Sebbane F, Lemaitre N, Sturdevant DE, Rebeil R, Virtaneva K, et al. (2006) Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague. Proc Natl Acad Sci U S A 103: 11766–11771. 16864791

39. Kukkonen M, Suomalainen M, Kyllonen P, Lahteenmaki K, Lang H, et al. (2004) Lack of O-antigen is essential for plasminogen activation by Yersinia pestis and Salmonella enterica. Mol Microbiol 51: 215–225. 14651623

40. Skurnik M, Peippo A, Ervela E (2000) Characterization of the O-antigen gene clusters of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Yersinia pestis shows that the plague bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O:1b. Mol Microbiol 37: 316–330. 10931327

41. Zheng L, Baumann U, Reymond JL (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32: e115. 15304544

42. Derbise A, Lesic B, Dacheux D, Ghigo JM, Carniel E (2003) A rapid and simple method for inactivating chromosomal genes in Yersinia. FEMS Immunol Med Microbiol 38: 113–116. 13129645

43. Derbise A, Chenal-Francisque V, Pouillot F, Fayolle C, Prevost M- C, et al. (2007) A horizontally acquired filamentous phage contributes to the pathogenicity of the plague bacillus. Molecular microbiology 63: 1145–1157. 17238929

44. Kukkonen M, Lahteenmaki K, Suomalainen M, Kalkkinen N, Emody L, et al. (2001) Protein regions important for plasminogen activation and inactivation of alpha(2)-antiplasmin in the surface protease Pla of Yersinia pestis. Mol Microbiol 40: 1097–1111. 11401715

45. Guinet F, Carniel E (2003) A technique of intradermal injection of Yersinia to study Y. pestis physiopathology. Adv Exp Med Biol 529: 73–78. 12756731

46. Van den Broeck W, Derore A, Simoens P (2006) Anatomy and nomenclature of murine lymph nodes: Descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J Immunol Methods 312: 12–19. 16624319

47. Ferrero RL, Ave P, Radcliff FJ, Labigne A, Huerre MR (2000) Outbred mice with long-term helicobacter felis infection develop both gastric lymphoid tissue and glandular hyperplastic lesions [In Process Citation]. J Pathol 191: 333–340. 10878557

48. Lang T, Ave P, Huerre M, Milon G, Antoine J (2000) Macrophage subsets harbouring Leishmania donovani in spleens of infected BALB/c mice: localization and characterization. Cellular Microbiology 2: 415–430. 11207597

49. Armed Forced Institute of Pathology (1992) Laboratory Methods in Histotechnology.; Prophet EB, Mills B, Arrington JB, Sobin LH, editors. Washington, DC.

50. Buchrieser C, Prentice M, Carniel E (1998) The 102-kilobase unstable region of Yersinia pestis comprises a high-pathogenicity island linked to a pigmentation segment which undergoes internal rearrangement. J Bacteriol 180: 2321–2329. 9573181

51. Degen JL, Bugge TH, Goguen JD (2007) Fibrin and fibrinolysis in infection and host defense. J Thromb Haemost 5: 24–31. 17635705

52. Samoilova SV, Samoilova LV, Yezhov IN, Drozdov IG, Anisimov AP (1996) Virulence of pPst+ and pPst- strains of Yersinia pestis for guinea-pigs. J Med Microbiol 45: 440–444. 8958247

53. Caulfield AJ, Lathem WW (2012) Substrates of the plasminogen activator protease of Yersinia pestis. Adv Exp Med Biol 954: 253–260. doi: 10.1007/978-1-4614-3561-7_32 22782771

54. Swedberg JE, Harris JM (2012) Natural and engineered plasmin inhibitors: applications and design strategies. Chembiochem 13: 336–348. doi: 10.1002/cbic.201100673 22238174

55. Bhattacharya S, Ploplis VA, Castellino FJ (2012) Bacterial plasminogen receptors utilize host plasminogen system for effective invasion and dissemination. J Biomed Biotechnol 2012: 482096. doi: 10.1155/2012/482096 23118509

56. Fulde M, Steinert M, Bergmann S (2013) Interaction of streptococcal plasminogen binding proteins with the host fibrinolytic system. Front Cell Infect Microbiol 3: 85. doi: 10.3389/fcimb.2013.00085 24319673

57. Vieira ML, Alvarez-Flores MP, Kirchgatter K, Romero EC, Alves IJ, et al. (2013) Interaction of Leptospira interrogans with human proteolytic systems enhances dissemination through endothelial cells and protease levels. Infect Immun 81: 1764–1774. doi: 10.1128/IAI.00020-13 23478319

58. Mitra MM, Alizadeh H, Gerard RD, Niederkorn JY (1995) Characterization of a plasminogen activator produced by Acanthamoeba castellanii. Mol Biochem Parasitol 73: 157–164. 8577323

59. Almeida L, Vanegas G, Calcagno M, Concepcion JL, Avilan L (2004) Plasminogen interaction with Trypanosoma cruzi. Mem Inst Oswaldo Cruz 99: 63–67. 15057349

60. Stie J, Fox D (2012) Blood-brain barrier invasion by Cryptococcus neoformans is enhanced by functional interactions with plasmin. Microbiology 158: 240–258. doi: 10.1099/mic.0.051524-0 21998162

61. Lahteenmaki K, Kuusela P, Korhonen TK (2000) Plasminogen activation in degradation and penetration of extracellular matrices and basement membranes by invasive bacteria. Methods 21: 125–132. 10816373

62. Lahteenmaki K, Edelman S, Korhonen TK (2005) Bacterial metastasis: the host plasminogen system in bacterial invasion. Trends Microbiol 13: 79–85. 15680767

63. Andreasen PA, Egelund R, Petersen HH (2000) The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci 57: 25–40. 10949579

64. Lahteenmaki K, Virkola R, Pouttu R, Kuusela P, Kukkonen M, et al. (1995) Bacterial plasminogen receptors: in vitro evidence for a role in degradation of the mammalian extracellular matrix. Infect Immun 63: 3659–3664. 7642304

65. Weiss SJ (1989) Tissue destruction by neutrophils. The New England journal of medicine 320: 365–376. 2536474

66. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nature Reviews Immunology 6: 173–182. 16498448

67. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology 13: 159–175. doi: 10.1038/nri3399 23435331

68. Hotchkiss RS, Swanson PE, Freeman BD, Tinsley KW, Cobb JP, et al. (1999) Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 27: 1230–1251. 10446814

69. Lang JD, Matute-Bello G (2009) Lymphocytes, apoptosis and sepsis: making the jump from mice to humans. Crit Care 13: 109. doi: 10.1186/cc7144 19216722

70. Giuliani A, Pirri G, Nicoletto SF (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Central European Journal of Biology 2: 1–33.

71. Haiko J, Suomalainen M, Ojala T, Lahteenmaki K, Korhonen TK (2009) Breaking barriers—attack on innate immune defences by omptin surface proteases of enterobacterial pathogens. Innate Immun 15: 67–80.

72. Thomassin JL, Brannon JR, Gibbs BF, Gruenheid S, Le Moual H (2012) OmpT outer membrane proteases of enterohemorrhagic and enteropathogenic Escherichia coli contribute differently to the degradation of human LL-37. Infect Immun 80: 483–492. doi: 10.1128/IAI.05674-11 22144482

73. Le Sage V, Zhu L, Lepage C, Portt A, Viau C, et al. (2009) An outer membrane protease of the omptin family prevents activation of the Citrobacter rodentium PhoPQ two-component system by antimicrobial peptides. Mol Microbiol 74: 98–111. doi: 10.1111/j.1365-2958.2009.06854.x 19708916

74. Derbise A, Chenal-Francisque V, Huon C, Fayolle C, Demeure CE, et al. (2010) Delineation and analysis of chromosomal regions specifying Yersinia pestis. Infect Immun 78: 3930–3941. doi: 10.1128/IAI.00281-10 20605981

75. Zimbler DL, Schroeder JA, Eddy JL, Lathem WW (2015) Early emergence of Yersinia pestis as a severe respiratory pathogen. Nat Commun 6: 7487. doi: 10.1038/ncomms8487 26123398

76. Gonzalez RJ, Lane MC, Wagner NJ, Weening EH, Miller VL (2015) Dissemination of a highly virulent pathogen: tracking the early events that define infection. PLoS Pathog 11: e1004587. doi: 10.1371/journal.ppat.1004587 25611317

77. Bosio CF, Jarrett CO, Gardner D, Hinnebusch BJ (2012) Kinetics of innate immune response to Yersinia pestis after intradermal infection in a mouse model. Infect Immun 80: 4034–4045. doi: 10.1128/IAI.00606-12 22966041

78. Shannon JG, Hasenkrug AM, Dorward DW, Nair V, Carmody AB, et al. (2013) Yersinia pestis subverts the dermal neutrophil response in a mouse model of bubonic plague. MBio 4: e00170-00113.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#