#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Abiotic Stresses Antagonize the Rice Defence Pathway through the Tyrosine-Dephosphorylation of OsMPK6


Chemical defence inducers make plants resistant to diseases such as rice blast. However, plants sometimes become more pathogen susceptible under abiotic stresses even in their presence. Because such regulation prioritizes the responses to the most life-threatening stress, it could be necessary for plants to survive in nature. However, it seems dispensable or even disadvantageous for crops cultivated under fertile conditions. Here, we show the molecular mechanism underlying one of such phenomena in rice. WRKY45 is a central transcription factor that regulates strong defence signalling mediated by salicylic acid. We found that WRKY45 is activated through phosphorylation by a protein kinase, OsMPK6, which is activated by dual phosphorylation in response to the defence signalling. We also found that OsMPK6 can be inactivated by tyrosine dephosphorylation in response to abiotic stresses such as low temperature and high salinity probably mediated by abscisic acid, leading to reduction of WRKY45-dependent disease resistance. Moreover, we found that specific tyrosine protein phosphatases dephosphorylate/inactivate OsMPK6 in response to abiotic stresses. Knockdown of their genes rendered rice plants resistant against blast disease even under the abiotic stresses, pointing to the way to further improve rice.


Vyšlo v časopise: Abiotic Stresses Antagonize the Rice Defence Pathway through the Tyrosine-Dephosphorylation of OsMPK6. PLoS Pathog 11(10): e32767. doi:10.1371/journal.ppat.1005231
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1005231

Souhrn

Chemical defence inducers make plants resistant to diseases such as rice blast. However, plants sometimes become more pathogen susceptible under abiotic stresses even in their presence. Because such regulation prioritizes the responses to the most life-threatening stress, it could be necessary for plants to survive in nature. However, it seems dispensable or even disadvantageous for crops cultivated under fertile conditions. Here, we show the molecular mechanism underlying one of such phenomena in rice. WRKY45 is a central transcription factor that regulates strong defence signalling mediated by salicylic acid. We found that WRKY45 is activated through phosphorylation by a protein kinase, OsMPK6, which is activated by dual phosphorylation in response to the defence signalling. We also found that OsMPK6 can be inactivated by tyrosine dephosphorylation in response to abiotic stresses such as low temperature and high salinity probably mediated by abscisic acid, leading to reduction of WRKY45-dependent disease resistance. Moreover, we found that specific tyrosine protein phosphatases dephosphorylate/inactivate OsMPK6 in response to abiotic stresses. Knockdown of their genes rendered rice plants resistant against blast disease even under the abiotic stresses, pointing to the way to further improve rice.


Zdroje

1. Matyssek R, Agerer R, Ernst D, Munch JC, Osswald W, Pretzsch H, et al. The plant's capacity in regulating resource demand. Plant biology. 2005;7(6):560–80. doi: 10.1055/s-2005-872981 16388460.

2. Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature. 2003;423(6935):74–7. doi: 10.1038/nature01588 12721627.

3. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, et al. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol. 2006;9(4):436–42. doi: 10.1016/j.pbi.2006.05.014 16759898.

4. Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC. Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol. 2012;28:489–521. doi: 10.1146/annurev-cellbio-092910-154055 22559264.

5. Sharma R, De Vleesschauwer D, Sharma MK, Ronald PC. Recent advances in dissecting stress-regulatory crosstalk in rice. Mol Plant. 2013;6(2):250–60. doi: 10.1093/mp/sss147 23292878.

6. Vert G, Chory J. Crosstalk in cellular signaling: background noise or the real thing? Dev Cell. 2011;21(6):985–91. doi: 10.1016/j.devcel.2011.11.006 22172668; PubMed Central PMCID: PMC3281494.

7. DenancÈ N, S·nchez-Vallet A, Goffner D, Molina A. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Frontiers in Plant Science. 2013;4. doi: 10.3389/fpls.2013.00155

8. Cao H, Glazebrook J, Clarke JD, Volko S, Dong X. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell. 1997;88(1):57–63. 9019406.

9. Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S, et al. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell. 2007;19(6):2064–76. doi: 10.1105/tpc.106.046250 17601827; PubMed Central PMCID: PMC1955718.

10. Sugano S, Jiang C-J, Miyazawa S-I, Masumoto C, Yazawa K, Hayashi N, et al. Role of OsNPR1 in rice defense program as revealed by genome-wide expression analysis. Plant Molecular Biology. 2010;74(6):549–62. Epub 2010/10/07. doi: 10.1007/s11103-010-9695-3 20924648.

11. Takatsuji H, Jiang C-J, Sugano S. Salicylic acid signaling pathway in rice and the potential applications of its regulators. JARQ. 2010;44(3):217–23. ISI:000284669300001.

12. Nakayama A, Fukushima S, Goto S, Matsushita A, Shimono M, Sugano S, et al. Genome-wide identification of WRKY45-regulated genes that mediate benzothiadiazole-induced defense responses in rice. BMC Plant Biology. 2013;13(1):150. doi: 10.1186/1471-2229-13-150

13. Shimono M, Koga H, Akagi AYA, Hayashi N, Goto S, Sawada M, et al. Rice WRKY45 plays important roles in fungal and bacterial disease resistance. Molecular Plant Pathology. 2012;13(1):83–94. doi: 10.1111/j.1364-3703.2011.00732.x 21726399

14. Inoue H, Hayashi N, Matsushita A, Xinqiong L, Nakayama A, Sugano S, et al. Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein-protein interaction. Proc Natl Acad Sci U S A. 2013;110(23):9577–82. doi: 10.1073/pnas.1222155110 23696671; PubMed Central PMCID: PMC3677490.

15. Matsushita A, Inoue H, Goto S, Nakayama A, Sugano S, Hayashi N, et al. Nuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program. The Plant Journal. 2013;73(2):302–13. doi: 10.1111/tpj.12035 23013464

16. Vlot AC, Dempsey DA, Klessig DF. Salicylic Acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol. 2009;47:177–206. doi: 10.1146/annurev.phyto.050908.135202 19400653.

17. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol. 2010;61:651–79. doi: 10.1146/annurev-arplant-042809-112122 20192755.

18. Mauch-Mani B, Mauch F. The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol. 2005;8(4):409–14. doi: 10.1016/j.pbi.2005.05.015 15939661.

19. Asselbergh B, De Vleesschauwer D, Hofte M. Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol Plant Microbe Interact. 2008;21(6):709–19. doi: 10.1094/MPMI-21-6-0709 18624635.

20. Cao FY, Yoshioka K, Desveaux D. The roles of ABA in plant-pathogen interactions. J Plant Res. 2011;124(4):489–99. doi: 10.1007/s10265-011-0409-y 21380629.

21. De Vleesschauwer D, Gheysen G, Höfte M. Hormone defense networking in rice: tales from a different world. Trends in Plant Science. 2013;18(10):555–65. doi: 10.1016/j.tplants.2013.07.002 23910453.

22. Takatsuji H, Jiang C-J. Plant hormone crosstalks under biotic stresses. In: Tran L-SP, Pal S, editors. Phytohormones: a window to metabolism, signaling and biotechnological applications: Springer New York; 2014. p. 323–50.

23. Audenaert K, De Meyer GB, Hofte MM. Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol. 2002;128(2):491–501. doi: 10.1104/pp.010605 11842153; PubMed Central PMCID: PMC148912.

24. Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, et al. Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell. 2008;20(6):1678–92. Epub 2008/07/01. tpc.107.054296 [pii] doi: 10.1105/tpc.107.054296 18586869.

25. Jiang C-J, Shimono M, Sugano S, Kojima M, Yazawa K, Yoshida R, et al. Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice–Magnaporthe grisea Interaction. Molecular Plant-Microbe Interactions. 2010;23(6):791–8. doi: 10.1094/MPMI-23-6-0791 20459318

26. Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell. 2011;23(4):1639–53. Epub 2011/04/19. doi: 10.1105/tpc.111.084996 21498677; PubMed Central PMCID: PMC3101563.

27. Ishihama N, Yamada R, Yoshioka M, Katou S, Yoshioka H. Phosphorylation of the Nicotiana benthamiana WRKY8 Transcription Factor by MAPK Functions in the Defense Response. Plant Cell. 2011. Epub 2011/03/10. tpc.110.081794 [pii] doi: 10.1105/tpc.110.081794 21386030.

28. Bartels S, Gonzalez Besteiro MA, Lang D, Ulm R. Emerging functions for plant MAP kinase phosphatases. Trends Plant Sci. 2010;15(6):322–9. Epub 2010/05/11. doi: 10.1016/j.tplants.2010.04.003 20452268.

29. Rodriguez MC, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol. 2010;61:621–49. doi: 10.1146/annurev-arplant-042809-112252 20441529.

30. Ueno Y, Yoshida R, Kishi-Kaboshi M, Matsushita A, Jiang C-J, Goto S, et al. MAP kinases phosphorylate rice WRKY45. Plant Signaling & Behavior. 2013;8(6):e24510.

31. Kahn RP, Libby JL. The effect of environmental factors and plant ages on the infection of rice by the blast fungus, Pyricularia oryzae. Phytopathology. 1958;48:25–30.

32. Bonman JM, Sanchez LM, Mackill AO. Effects of water deficit on rice blast. II. Disease-development in the field. J Plant Prot Trop. 1988;5:67–73.

33. Gill MA, Bonman JM. Effects of water deficit on rice blast. I. Influence of water deficit on components of resistance. J Plant Prot Trop. 1988;5:61–6.

34. Koga H, Dohi K, Mori M. Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiological and Molecular Plant Pathology. 2004;65(1):3–9. doi: 10.1016/j.pmpp.2004.11.002

35. Yazawa K, Jiang C-J, Kojima M, Sakakibara H, Takatsuji H. Reduction of abscisic acid levels or inhibition of abscisic acid signaling in rice during the early phase of Magnaporthe oryzae infection decreases its susceptibility to the fungus. Physiological and Molecular Plant Pathology. 2012;78:1–7. doi: 10.1016/j.pmpp.2011.12.003

36. Kinoshita E, Kinoshita-Kikuta E. Improved Phos-tag SDS-PAGE under neutral pH conditions for advanced protein phosphorylation profiling. Proteomics. 2011;11(2):319–23. doi: 10.1002/pmic.201000472 21204258.

37. Anderson NG, Maller JL, Tonks NK, Sturgill TW. Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature. 1990;343(6259):651–3. 2154696

38. Aoyama T, Chua NH. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J. 1997;11(3):605–12. Epub 1997/03/01. 9107046.

39. Kishi-Kaboshi M, Okada K, Kurimoto L, Murakami S, Umezawa T, Shibuya N, et al. A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant J. 2010;63(4):599–612. doi: 10.1111/j.1365-313X.2010.04264.x 20525005; PubMed Central PMCID: PMC2988419.

40. Krishnan N, Bencze G, Cohen P, Tonks NK. The anti-inflammatory compound BAY 11–7082 is a potent inhibitor of Protein Tyrosine Phosphatases. FEBS J. 2013. doi: 10.1111/febs.12283 23578302.

41. Bartels S, Anderson JC, Gonzalez Besteiro MA, Carreri A, Hirt H, Buchala A, et al. MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. Plant Cell. 2009;21(9):2884–97. doi: 10.1105/tpc.109.067678 19789277; PubMed Central PMCID: PMC2768924.

42. Gupta R. Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants. Plant Physiology. 2003;132(3):1149–52. doi: 10.1104/pp.103.020792 12857797

43. Guan KL. The mitogen activated protein kinase signal transduction pathway: from cell surface to the nucleus. Cell Signal. 1994;6:581–9. 7857762

44. Xu Q, Fu HH, Gupta R, Luan S. Molecular characterization of a tyrosine-specific protein phosphatase encoded by a stress-responsive gene in Arabidopsis. The Plant Cell. 1998;10(5):849–57. 9596642

45. Görlach J, Volrath S, Knauf-Beiter G, Hengy G, Beckhove U, Kogel KH, et al. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell. 1996;8(4):629–43. doi: 10.1105/tpc.8.4.629 8624439

46. Lawton KA, Friedrich L, Hunt M, Weymann K, Delaney T, Kessmann H, et al. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. The Plant Journal. 1996;10(1):71–82. doi: 10.1046/j.1365-313X.1996.10010071.x 8758979

47. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, et al. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 2003;133(4):1755–67. doi: 10.1104/pp.103.025742 14645724; PubMed Central PMCID: PMC300730.

48. Besri M. Effects of salinity on plant diseases development. In: Lieth H, Al Masoom A, editors. Towards the rational use of high salinity tolerant plants. Tasks for vegetation science. 28: Springer Netherlands; 1993. p. 67–74.

49. Li QF, Wang C, Jiang L, Li S, Sun SS, He JX. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Sci Signal. 2012;5(244):ra72. doi: 10.1126/scisignal.2002908 23033541.

50. Lozano-Duran R, Macho AP, Boutrot F, Segonzac C, Somssich IE, Zipfel C. The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. Elife. 2013;2:e00983. doi: 10.7554/eLife.00983 24381244; PubMed Central PMCID: PMC3875382.

51. Qi M, Yang Y. Quantification of magnaporthe grisea during infection of rice plants using real-time polymerase chain reaction and northern blot/phosphoimaging analyses. Phytopathology. 2002;92(8):870–6. doi: 10.1094/PHYTO.2002.92.8.870 18942966

52. Ouwerkerk P, de Kam R, Hoge J, Meijer A. Glucocorticoid-inducible gene expression in rice. Planta. 2001;213:370–8. doi: 10.1007/s004250100583 11506359

53. Miki D, Shimamoto K. Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant and Cell Physiology. 2004;45(4):490–5. doi: 10.1093/pcp/pch048 15111724

54. Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal. 1994;6(2):271–82. doi: 10.1046/j.1365-313X.1994.6020271.x 7920717

55. Fuse T, Sasaki T, Yano M. Ti-plasmid vectors useful for functional analysis of rice genes. Plant BioTechology. 2001;18:219–22.

56. Ueno Y, Imanari E, Emura J, Yoshizawa-Kumagaye K, Nakajima K, Inami K, et al. Immunological analysis of the phosphorylation state of maize C4-form phosphoenolpyruvate carboxylase with specific antibodies raised against a synthetic phosphorylated peptide. Plant J. 2000;21(1):17–26. 10652147.

57. Huang Y, Li H, Gupta R, Morris PC, Luan S, Kieber JJ. ATMPK4, an Arabidopsis homolog of mitogen-activated protein kinase, is activated in vitro by AtMEK1 through threonine phosphorylation. Plant Physiology. 2000;122(4):1301–10. doi: 10.1104/pp.122.4.1301 10759527

58. Akagi A, Jiang C-J, Takatsuji H. Magnaporthe oryzae Inoculation of rice seedlings by spraying with a spore suspension. Bioprotocol. 2015;5(11):e1486.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#