#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The zooarchaeology and isotopic ecology of the Bahamian hutia (Geocapromys ingrahami): Evidence for pre-Columbian anthropogenic management


Autoři: Michelle J. LeFebvre aff001;  Susan D. deFrance aff002;  George D. Kamenov aff003;  William F. Keegan aff001;  John Krigbaum aff002
Působiště autorů: Florida Museum of Natural History, Gainesville, Florida, United States of America aff001;  Department of Anthropology, University of Florida, Gainesville, Florida, United States of America aff002;  Department of Geological Sciences, University of Florida, Gainesville, Florida, United States of America aff003
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0220284

Souhrn

Bahamian hutias (Geocapromys ingrahami) are the only endemic terrestrial mammal in The Bahamas and are currently classified as a vulnerable species. Drawing on zooarchaeological and new geochemical datasets, this study investigates human management of Bahamian hutias as cultural practice at indigenous Lucayan settlements in The Bahamas and the Turks & Caicos Islands. In order to determine how hutia diet and distribution together were influenced by Lucayan groups we conducted isotopic analysis on native hutia bone and tooth enamel recovered at the Major’s Landing site on Crooked Island in The Bahamas and introduced hutias from the Palmetto Junction site on Providenciales in the Turks & Caicos Islands. Results indicate that some hutias consumed 13C-enriched foods that were either provisioned or available for opportunistic consumption. Strontium isotope ratios for hutia tooth enamel show a narrow range consistent with local origin for all of the archaeological specimens. In contrast, analysis of strontium isotopes in modern Bahamian hutia teeth from animals relocated to Florida from The Bahamas demonstrates that these animals rapidly lost their Bahamian signature and adopted a Florida signature. Therefore, strontium should be used cautiously for determining hutia provenance, particularly for individuals that were translocated between islands. Overall, our findings suggest that ancient human presence did not always result in hutia vulnerability and that the impact to hutia populations was variable across pre-Columbian indigenous settlements.

Klíčová slova:

Diet – Teeth – Strontium – Islands – Collagens – Archaeology – The Bahamas – Turkic people


Zdroje

1. Cooke SB, Dávalos LM, Mychajliw AM, Turvey ST, Upham NS. Anthropogenic extinction dominates Holocene declines of West Indian mammals. Annu Rev Ecol Evol Syst. 2017;48: 301–327.

2. Upham NS. Past and present of insular Caribbean mammals: understanding Holocene extinctions to inform modern biodiversity conservation. J Mammal. 2017;98(4): 913917.

3. Wing ES. Zooarchaeology of West Indian land mammals. In: Woods CA, Sergile FE, editors. Terrestrial mammals of the West Indies. Gainesville: Florida Museum of Natural History; 2012. p. 342–356.

4. Courcelle M, Tilak MK, Leite YLR, Douzery EJP, Fabre PH. Digging for the spiny rat and hutia phylogeny using a gene capture approach, with the description of a new mammal subfamily. Mol Phylogenet Evol. 2019;136: 241–253. doi: 10.1016/j.ympev.2019.03.007 30885830

5. Morgan GS, MacPhee RDE, Woods R, Turvey ST. Late Quaternary fossil mammals from the Cayman Islands, West Indies. American Museum of Natural History; 2019;428.

6. Fabre PH, Vilstrup JT, Raghavan M, Sarkissian CD, Willerslev E, Douzery EJP, et al. Rodents of the Caribbean: origin and diversification of hutias unravelled by next-generation museomics. Biol Lett. 2014;10: 20140266.

7. Goodall PMP. A historical survey of research on land mammals in the Greater Antilles. In: Woods CA, Sergile FE, editors. Terrestrial mammals of the West Indies. Gainesville: Florida Museum of Natural History; 2012. p. 110.

8. Upham NS, Borroto-Páez R. Molecular phylogeography of endangered Cuban hutias within the Caribbean radiation of capromyid rodents. J Mammal. 2017;98(4): 950–963.

9. Woods CA, Borroto-Páez R, Kilpatrick CW. Insular patterns and radiations of West Indian Rodents. In: Woods CA, Sergile FE, editors. Terrestrial mammals of the West Indies. Gainesville: Florida Museum of Natural History; 2012. p. 335–353.

10. Borroto-Páez R, Mancina CA. Biodiversity and conservation of Cuban mammals: past, present, and invasive species. J Mammal. 2017;98(4): 964–985.

11. Jordan KC. Ecology of an introduced population of the Bahamian hutia (Geocapromys ingrahami). In: Woods CA, Sergile FE, editors. Terrestrial mammals of the West Indies. Gainesville: Florida Museum of Natural History; 2012. p. 115–142.

12. LeFebvre MJ, DuChemin G, deFrance SD, Keegan WF, Walczesky K. Bahamian hutia (Geocapromys ingrahami) in the Lucayan Realm: pre-Columbian exploitation and translocation. Environ Archaeol. 2019;24(2): 115–131.

13. Newsom LA, Wing ES. On land and sea: Native American uses of biological resources in the West Indies. Tuscaloosa: The University of Alabama Press; 2004.

14. Clough GC. Biology of the Bahamian Hutia, Geocapromys ingrahami. J Mammal. 1972;53(4): 807–823.

15. DuChemin GR. Animal use and exploitation at Palmetto Junction, Turks and Caicos Islands [thesis]. Gainesville: University of Florida; 2005.

16. Lawrence B. New Geocapromys from the Bahamas. Occasional Papers of the Boston Society of Natural History 1934;8: 189–196.

17. Nieves-Rivera MS, McFarlane DA. In search of the extinct hutia in cave deposits of Isla de Mona. NSS News (National Speleological Society). 2001;59(4): 92–95.

18. Wing ES. Pets and camp followers in the West Indies. In: Reitz E, Scarry CM, Scudder SJ, editors. Case studies in environmental archaeology. New York: Springer; 2008. p. 405–425.

19. Colten RH, Worthington B. Faunal remains from the Archaic and Archaic ceramic site of Vega del Palmar, Cuba. J Carib Archaeol. 2014;14: 23–49.

20. Colten RH, Worthington B.. Museum Collections and Archaic Era Vertebrate Faunal Remains from Cuba. Environ Archaeol. 2019;24(2): 211–227.

21. LeFebvre MJ, deFrance SD. Animal management and domestication in the realm of the Ceramic Age farming. In: Reid BA, editor. The archaeology of Caribbean and circum-Caribbean farmers (6000 BC—AD 1500). London: Routledge; 2018. p. 149–170.

22. Steadman DW, Singleton HM, Delancy KM, Albury NA, Soto-Centeno JA, Gough H, et al. Late Holocene historical ecology: the timing of vertebrate extirpation on Crooked Island, Commonwealth of The Bahamas. J Island Coastal Archaeol. 2017;12(4): 572–584.

23. Turvey S, Dávalos L. Geocapromys ingrahami. The IUCN red list of threatened species 2008. 2008; e.T9002A12949103. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T9002A12949103.en.

24. Turvey ST, Kennerley RJ, Nuñez-Miño, Young RP. The last survivors: current status and conservation of the non-volant land mammals of the insular Caribbean. J Mammal. 2017;98(4): 918–936.

25. Clough GC. Additional notes on the biology of the Bahamian Hutia, Geocapromys ingrahami. J Mammal. 1974;55(3): 670–672. 4850432

26. Borroto-Páez R, Woods CA.2012. Feeding habits of the capromyid rodents. In: Woods CA, Sergile FE, editors. Terrestrial mammals of the West Indies. Gainesville: Florida Museum of Natural History; 2012. p. 221–228.

27. Jordan KC. An ecology of the Bahamian hutia [dissertation]. Gainesville: University of Florida; 1989.

28. Howe RJ, Clough GC. The Bahamian hutia (Geocapromys ingrahami) in captivity. Int Zoo Yearb. 1971;11: 89–93.

29. Clough GC, Fulk G. The vertebrate fauna and the vegetation of East Plana Cay, Bahama Islands. Atoll Res Bull. 1971;138: 1–17.

30. Clough GC. A most peaceable rodent. Natural History. 1973;82(6): 66–74.

31. Eisenberg JF, Woods CA. Review of captive studies of the Capromyidae with comments. In: Woods CA, Sergile FE, editors. Terrestrial mammals of the West Indies. Gainesville: Florida Museum of Natural History; 2012. p. 143150.

32. Berman MJ, Gnivecki PL, Pateman MP. The Bahama Archipelago. In: Keegan WF, Hofman CL, Rodríguez-Ramos R, editors. The Oxford handbook of Caribbean archaeology. Oxford: Oxford University Press; 2013. p. 264–280.

33. Keegan WF, Hofman CL. The Caribbean before Columbus. New York: Oxford University Press; 2017.

34. Keegan WF, Carlson LA. Talking Taíno: Caribbean natural history from a native perspective. Tuscaloosa: The University of Alabama Press; 2008.

35. Carr RS, Day JS, Ransom JB, Schaffer WC, Beriault JG. An archaeological and historical assessment of Preacher’s Cave, Eleuthera, Bahamas. Davie (FL): Research Atlantica, Inc. and the Archaeological and Historical Conservancy, Inc.; 2006. Technical Report #4.

36. Carlson LA. Aftermath of a feast: human colonization of the southern Bahamian archipelago and its effects on the indigenous fauna [dissertation]. Gainesville: University of Florida; 1999.

37. Keegan WF. 2018 Long Island, The Bahamas summary of fieldwork, February 22–27, 2018. https://www.researchgate.net/project/Bahamas-Colonization-Project/update/5ace0f804cde260d15d81dad

38. Craton M, Saunders G. Islanders in the stream: a history of the Bahamian people. Volume One: from aboriginal times to the end of slavery. Athens: The University of Georgia Press; 1992.

39. Ciofalo AJ, Keegan WF, Pateman MP, Pagán-Jiménez J, Hofman CL. Determining precolonial botanical foodways: starch recovery and analysis, Long Island, The Bahamas. J Archaeol Sci Rep. 2018;21: 305–317.

40. Berman MJ, Pearsall DM. Plants, people, and culture in the prehistoric central Bahamas: A view from the Three Dog Site, and early Lucayan settlement on San Salvador Island, Bahamas. Lat Am Ant. 2000;11(3): 219–239.

41. Veloz Maggiolo M. Notas sobre la Zamia en la prehistoria del Caribe. Revista de Arqueología Americana. 1992;6: 125–138.

42. Figueredo AE. Manioc dethroned and maize triumphant: interpretations on the ethnohistory and archaeology of the Bahamas with sundry notes on relations of production. J Carib Archaeol. 2015;15: 120–134.

43. Keegan WF. Bahamian archaeology: life in the Bahamas and Turks and Caicos before Columbus. Nassau: Media Publishing; 1997.

44. Morsink J. The power of salt: a holistic approach to salt in the prehistoric circum-Caribbean region [dissertation]. Gainesville: University of Florida; 2013.

45. Morsink J. Catalytic environments. Environ Archaeol. 2019:24(2): 149–160.

46. Sauer CO. The early Spanish main. Los Angeles: University of California Press; 1966.

47. Keegan WF. The people who discovered Columbus: the prehistory of the Bahamas. Gainesville: University Press of Florida; 1992.

48. Wing ES, Reitz EJ. Prehistoric fishing communities of the Caribbean. New World Archaeol. 1982;5: 13–32.

49. deFrance SD. 1991. Zooarchaeological research on Lucayan Taino subsistence: Crooked Island, Bahamas. Report on File: Environmental Archaeology, Florida Museum of Natural History, Gainesville.

50. Giovas CM, Kamenov GD, Fitzpatrick SM, Krigbaum J. Sr and Pb isotopic investigation of mammal introductions: pre-Columbian zoogeographic records from the Lesser Antilles, West Indies. J Archaeol Sci. 2016;69: 39–53.

51. Krigbaum J, Fitzpatrick SM, Bankaitis J. Human paleodiet at Grand Bay, Carriacou, Lesser Antilles. J Island Coastal Archaeol. 2013;8: 210–227.

52. Laffoon JE, Davies GR, Hoogland MLP, Hofman CL. Spatial variation of biologically available strontium isotopes (87Sr/86Sr) in an archipelagic setting: a case study from the Caribbean. J Archaeol Sci. 2012;9(7): 2371–2384.

53. Laffoon JE, Valcárcel Rojas R, Hofman CL. Oxygen and carbon isotope analysis of human dental enamel from the Caribbean: implications for investigating individual origins. Archaeometry. 2013;55(4): 742–765.

54. Laffoon JE. Human mobility and dietary patterns in precolonial Puerto Rico: integrating multiple isotope data. In: Roksandic I, editor. Cuban archaeology in the Caribbean. Gainesville: University Press of Florida; 2016. p. 147–167.

55. Laffoon JE, Hoogland MLP, Davies GR, Hofman CL. A multi-isotope investigation of human and dog mobility and diet in the pre-colonial Antilles. Environ Archaeol. 2019;24(2): 132–148.

56. Pestle WJ. Fishing down a prehistoric Caribbean marine food web: isotopic evidence from Punta Candelero, Puerto Rico. J Island Coastal Archaeol. 2013;8(2): 228–254.

57. Pestle WJ, Laffoon JE. Quantitative paleodietary reconstruction with complex foodwebs: an isotopic case study from the Caribbean. J Archaeol Sci Rep. 2018;17: 393–403.

58. Stokes AV. A biogeographic survey of prehistoric human diet in the West Indies using stable isotopes [dissertation]. Gainesville: University of Florida; 1998.

59. Schroeder H, Sikora M, Gopalakrishnan S, Cassidy LM, Delser PM, Velasco MS, et al. Origins and genetic legacies of the Caribbean Taino. PNAS 2018;115(10): 2341–2346. doi: 10.1073/pnas.1716839115 29463742

60. DeNiro MJ, Epstein S. Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta. 1978;42: 495–506.

61. DeNiro MJ, Epstein S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta. 1981;45: 341–351.

62. Krueger HW, Sullivan CH. Models for carbon isotope fractionation between diet and bone. In: Turnlund JF, Johnson PE, editors. Stable isotopes in nutrition. ACS Symposium Series, 258. Washington, DC: American Chemical Society; 1984. p. 205–222.

63. Keegan WF, DeNiro MJ. Stable carbon- and nitrogen-isotope ratios of bone collagen used to study coral-reef and terrestrial components of prehistoric Bahamian diet. Am Antiq. 1988;53(2): 320–336.

64. Ambrose SH. Isotopic analysis of paleodiets: methodological and interpretative considerations. In: Sandford MK, editor. Investigations of ancient human tissue: chemical analyses in anthropology. New York: Gordon and Breach; 1993. p. 59–130

65. Norr L. 2002. Bone isotopic analysis and prehistoric diet at the Tutu site. In: Righter E, editor. The Tutu archaeological village site: a multidisciplinary case study in human adaptation. New York: Routledge; 2002. p. 263–273.

66. Froehle AW, Kellner CM, Schoeninger MJ. FOCUS: effect of diet and protein source on carbon isotope rations in collagen: follow up to Warinner and Tuross (2009). J Archaeol Sci. 2010;37(10): 2662–2670.

67. Froehle AW, Kellner CM, Schoeninger MJ. Multivariate carbon and nitrogen stable isotope model for the reconstruction of prehistoric human diet. Am J Phys Anthropol. 2012;147: 352–369. doi: 10.1002/ajpa.21651 22213005

68. Somerville AD, Fauvelle M, Froehle AW. Applying new approaches to modeling diet and status: isotopic evidence for commoner resiliency and elite variability in the Classic Maya lowlands. J Archaeol Sci. 2013;40(3): 1539–1553.

69. Bentley RA. Strontium isotopes from the earth to the archaeological skeleton: a review. J Archaeol Method Theory. 2006;13(2006): 135–187.

70. Lee-Thorp J, van der Merwe NJ. Aspects of chemistry of modern and fossil biological apatites. J Archaeol Sci. 1991;18(3): 343–354.

71. Price TD, Burton JH, Bentley RA. The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. Archaeometry. 2002;44(1): 117–135.

72. Burton JH, Price TD. Seeking the local 87Sr/86Sr ratio to determine geographic origins of humans. In: Armitage RA, Burton JH, editors. Archaeological chemistry VIII. Washington, DC: American Chemical Society; 2013. p. 309–320.

73. Carew JL, Mylroie JE. Geology of the Bahamas. In: Vacher HL, Quinn TM, editors. Geology and hydrology of carbonate islands. New York: Elsevier; 1997. p. 91–139.

74. McArthur JM, Howarth RJ. Strontium isotope stratigraphy. In: Gradstein F, Ogg J, Smith A, editors. A geological time scale. Cambridge (UK): Cambridge University Press; 2004. p. 96–105.

75. Swart PK, Oehlert AM, Mackenzie GJ, Eberli GP, Reijmer JJG. The fertilization of the Bahamas by Saharan dust: a trigger for carbonate precipitation. Geology. 2014;42(8): 671–674.

76. Pourmand A, Prospero JM, Sharifi A. Geochemical fingerprinting of trans-Atlantic African dust based on radiogenic Sr-Nd-Hf isotopes and rare earth element anomalies. Geology. 2014;42(8): 675–678.

77. Schulting R, Richards M, Pouncett J, Manco BN, Freid E, Ostapkowicz J. Absence of Saharan dust influence on the strontium isotope ratios on modern trees from the Bahamas and Turks and Caicos Islands. Quat Int. 2018;89: 394–412.

78. Ostapkowicz J, Schulting R, Wiedenhoeft A, Richards M. Provenancing Taino and Lucayan wooden sculptures using strontium (87Sr/86Sr) isotopes. Preliminary report on file at National Museums Liverpool, Liverpool, UK.

79. Ostapkowicz J, Ramsey CB, Brock F. Birdmen, cemís, and duhos: Material studies and AMS 14C dating and pre-hispanic Caribbean wood sculptures in the British Museum. J Archaeol Sci. 2013;40: 4675–4687.

80. Marino BD, McElroy MB. Isotopic composition of atmospheric CO2 inferred from carbon in C4 plant cellulose. Nature 1991;349: 127–131.

81. Vaughan TA, Ryan JM, Czaplewski NJ. Mammalogy (5th ed.). Sudbury, MA: Jones and Bartlett Publishers; 2011.

82. Ambrose SH, Norr L. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In: Lambert JB, Grupe G, editors. Prehistoric human bone: archaeology at the molecular level. Berlin: Springer-Verlag; 1993. p. 1–37.


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#