#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

CRISPR/Cas9-based editing of a sensitive transcriptional regulatory element to achieve cell type-specific knockdown of the NEMO scaffold protein


Autoři: Milad Babaei aff001;  Yuekun Liu aff001;  Shelly M. Wuerzberger-Davis aff002;  Ethan Z. McCaslin aff001;  Christopher J. DiRusso aff001;  Alan T. Yeo aff001;  Larisa Kagermazova aff001;  Shigeki Miyamoto aff002;  Thomas D. Gilmore aff001
Působiště autorů: Department of Biology, Boston University, Boston, Massachusetts, United States of America aff001;  Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222588

Souhrn

The use of alternative promoters for the cell type-specific expression of a given mRNA/protein is a common cell strategy. NEMO is a scaffold protein required for canonical NF-κB signaling. Transcription of the NEMO gene is primarily controlled by two promoters: one (promoter B) drives NEMO transcription in most cell types and the second (promoter D) is largely responsible for NEMO transcription in liver cells. Herein, we have used a CRISPR/Cas9-based approach to disrupt a core sequence element of promoter B, and this genetic editing essentially eliminates expression of NEMO mRNA and protein in 293T human kidney cells. By cell subcloning, we have isolated targeted 293T cell lines that express no detectable NEMO protein, have defined genomic alterations at promoter B, and do not support activation of canonical NF-κB signaling in response to treatment with tumor necrosis factor. Nevertheless, non-canonical NF-κB signaling is intact in these NEMO-deficient cells. Expression of ectopic wild-type NEMO, but not certain human NEMO disease mutants, in the edited cells restores downstream NF-κB signaling in response to tumor necrosis factor. Targeting of the promoter B element does not substantially reduce NEMO expression (from promoter D) in the human SNU-423 liver cancer cell line. Thus, we have created a strategy for selectively eliminating cell type-specific expression from an alternative promoter and have generated 293T cell lines with a functional knockout of NEMO. The implications of these findings for further studies and for therapeutic approaches to target canonical NF-κB signaling are discussed.

Klíčová slova:

DNA transcription – Protein expression – 293T cells – Phosphorylation – DNA cloning – Guide RNA – Cell disruption


Zdroje

1. Ayoubi TA, Van De Ven WJ. Regulation of gene expression by alternative promoters. FASEB J. 2011;10:453–60.

2. Davuluri RV, Suzuki Y, Sugano S, Plass C, Huang TH. The functional consequences of alternative promoter use in mammalian genomes. Trends Genet. 2008;24:167–77. doi: 10.1016/j.tig.2008.01.008 18329129

3. Modrek B, Lee C. A genomic view of alternative splicing. Nat Genet. 2002;30:13–9. doi: 10.1038/ng0102-13 11753382

4. Xin D, Hu L, Kong X. Alternative promoters influence alternative splicing at the genomic level. PLoS ONE 2008;3:e2377. doi: 10.1371/journal.pone.0002377 18560582

5. David CJ, Manley JL. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev. 2010; 24:2343–64. doi: 10.1101/gad.1973010 21041405

6. Zhang J, Manley JL. Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov. 2013; 3:1228–37. doi: 10.1158/2159-8290.CD-13-0253 24145039

7. Vacik T, Raska I. Alternative intronic promoters in development and disease. Protoplasma. 2017;154:1201–6.

8. Hayden MS, Ghosh S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 2012;26:203–34. doi: 10.1101/gad.183434.111 22302935

9. Sun S-C. Non-canonical NF-κB signaling pathway. Cell Res. 2011;21:71–85. doi: 10.1038/cr.2010.177 21173796

10. Maubach G, Schmadicke AC, Naumann M. NEMO links nuclear factor-κB to human diseases. Trends Mol Med. 2017;23:1138–55. doi: 10.1016/j.molmed.2017.10.004 29128367

11. Schmidt-Supprian M, Bloch W, Courtois G, Addicks K, Israël A, Rajewsky K, et al. NEMO/IKKγ-deficient mice model incontinentia pigmenti. Mol Cell. 2000;5:981–92. doi: 10.1016/s1097-2765(00)80263-4 10911992

12. Courtois G, Gilmore TD. Mutations in the NF-κB signaling pathway: implications for human disease. Oncogene. 2006;25:6831–43. doi: 10.1038/sj.onc.1209939 17072331

13. Maier HJ, Wagner M, Schips TG, Salem HH, Baumann B, Wirth T. Requirement of NEMO/IKKγ for effective expansion of KRAS-induced precancerous lesions in the pancreas. Oncogene. 2013;32:2690–5. doi: 10.1038/onc.2012.272 22751123

14. Puar YR, Shanmugam MK, Fan L, Arfuso F, Sethi G, Tergaonkar V. Evidence for the involvement of the master transcription factor NF-κB in cancer initiation and progression. Biomedicines. 2018;6:e82. doi: 10.3390/biomedicines6030082 30060453

15. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99. doi: 10.1016/j.cell.2010.01.025 20303878

16. Luedde T, Schwabe RF. NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2011;8:108–18. doi: 10.1038/nrgastro.2010.213 21293511

17. Beraza N, Malato Y, Sander LE, Al-Masaoudi M, Freimuth J, Riethmacher D, et al. Hepatocyte-specific NEMO deletion promotes NK/NKT cell- and TRAIL-dependent liver damage. J Exp Med. 2009;206:1727–37. doi: 10.1084/jem.20082152 19635861

18. Luedde T, Beraza N, Kotsikoris V, van Loo G, Nenci A, De Vos R, et al. Deletion of NEMO/IKKγ in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell. 2007;11:119–32. doi: 10.1016/j.ccr.2006.12.016 17292824

19. Fusco F, Mercadante V, Miano MG, Ursini MV. Multiple regulatory regions and tissue-specific transcription initiation mediate the expression of NEMO/IKKγ gene. Gene 2006;383:99–107. doi: 10.1016/j.gene.2006.07.022 16997509

20. Floor SN, Doudna JA. Tunable protein synthesis by transcript isoforms in human cells. eLife 2016;5:e10921. doi: 10.7554/eLife.10921 26735365

21. Vo Ngoc L, Cassidy CJ, Huang CY, Duttke SHC, Kadonaga JT. The human initiator is a distinct and abundant element that is precisely positioned in focused core promoters. Genes Dev. 2017;31:6–11. doi: 10.1101/gad.293837.116 28108474

22. Shaffer R, DeMaria AM, Kagermazova L, Liu Y, Babaei M, Caban-Penix S, et al. A central conserved region of NEMO is required for IKKβ-induced conformational change and signal propagation. Biochemistry 2019;58:2906–2920. doi: 10.1021/acs.biochem.8b01316 31145594

23. Galgóczy P, Rosenthal A, Platzer M. Human–mouse comparative sequence analysis of the NEMO gene reveals an alternative promoter within the neighboring G6PD gene. Gene. 2001;271:93–8. doi: 10.1016/s0378-1119(01)00492-9 11410370

24. Fusco F, Paciolla M, Napolitano F, Pescatore A, D'Addario I, Bal E, et al. Genomic architecture at the Incontinentia Pigmenti locus favours de novo pathological alleles through different mechanisms. Hum Mol Genet. 2012;21:1260–71. doi: 10.1093/hmg/ddr556 22121116

25. Franzè A, Ferrante MI, Fusco F, Santoro E, Martini G, Ursini MV. Molecular anatomy of the human glucose 6-phosphate dehydrogenase promoter. FEBS Lett. 1998;437:313–8. doi: 10.1016/s0014-5793(98)01259-9 9824315

26. Lawhorn IE, Ferreira JP, Wang CL. Evaluation of sgRNA target sites for CRISPR mediated repression of TP53. PLoS One 2014;9:e113232. doi: 10.1371/journal.pone.0113232 25398078

27. Fulco CP, Munschauer M, Anyoha R, Munson G, Grossman SR, Perez EM, et al. Systemic mapping of functional enhancer-promoter connections with CRISPR interference. Science 2016;354:769–73. doi: 10.1126/science.aag2445 27708057

28. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013;152:1173–83. doi: 10.1016/j.cell.2013.02.022 23452860

29. Sanjana NE, Wright J, Zheng K, Shalem O, Fontanillas P, Joung J, et al. High-resolution interrogation of functional elements in the noncoding genome. Science. 2016;353:1545–9. doi: 10.1126/science.aaf7613 27708104

30. Vo Ngoc L, Wang Y-L, Kassavetis GA, Kadonaga JT. The punctilious RNA polymerase II core promoter. Genes Dev. 2017;31:1289–301. doi: 10.1101/gad.303149.117 28808065

31. Han Y, Slivano OJ, Christie CK, Cheng AW, Miano JM. CRISPR-Cas9 genome editing of a single regulatory element nearly abolishes target gene expression in mice—brief report. Arterioscler Thromb Vasc Biol. 2015;35:312–5. doi: 10.1161/ATVBAHA.114.305017 25538209

32. Stepanenko A, Andreieva S, Korets K, Mykytenko D, Huleyuk N, Vassetzky Y, et al. Step-wise and punctuated genome evolution drive phenotype changes of tumor cells. Mutat Res. 2015;771:56–69. doi: 10.1016/j.mrfmmm.2014.12.006 25771981

33. Lin YC, Boone M, Meuris L, Lemmens I, Van Roy N, Soete A, et al. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat Commun. 2014;5:4767. doi: 10.1038/ncomms5767 25182477

34. Schröfelbauer B, Polley S, Behar M, Ghosh G, Hoffmann A. NEMO ensures signaling specificity of the pleiotropic IKKβ by directing its kinase activity toward IκBα. Mol Cell. 2012;47:111–21. doi: 10.1016/j.molcel.2012.04.020 22633953

35. Cote S, Gilmore TD, Shaffer R, Weber U, Bollam R, Golden MS, et al. Mutation of nonessential cysteines shows that the NF-κB essential modulator forms a constitutive noncovalent dimer that binds IκB kinase-β with high affinity. Biochemistry. 2013;52:9141–54. doi: 10.1021/bi401368r 24266532

36. Salt BH, Niemela JE, Pandey R, Hanson EP, Deering RP, Quinones R, et al. IKBKG (nuclear factor-κB essential modulator) mutation can be associated with opportunistic infection without impairing Toll-like receptor function. J. Allergy Clin Immunol. 2008;121:976–82. doi: 10.1016/j.jaci.2007.11.014 18179816

37. Ku C-L, Picard C, Erdos M, Jeurissen A, Bustamante J, Puel A, et al. IRAK4 and NEMO mutations in otherwise healthy children with recurrent invasive pneumococcal disease. J Med Genet. 2007;44:16–23. doi: 10.1136/jmg.2006.044446 16950813

38. Kawai T, Nishikomori R, Izawa K, Murata Y, Tanaka N, Sakai H, et al. Frequent somatic mosaicism of NEMO in T cells of patients with X-linked anhidrotic ectodermal dysplasia with immunodeficiency. Blood. 2012;119:5458–66. doi: 10.1182/blood-2011-05-354167 22517901

39. Fusco F, Bardaro T, Fimiani G, Mercadante V, Miano MG, Falco G, et al. Molecular analysis of the genetic defect in a large cohort of IP patients and identification of novel NEMO mutations interfering with NF-κB activation. Hum Mol Genet. 2004;13:1763–73. doi: 10.1093/hmg/ddh192 15229184

40. Gilmore TD, Garbati MR. Inhibition of NF-κB signaling as a strategy in disease therapy. Curr Top Microbiol Immunol. 2011;349:245–63. doi: 10.1007/82_2010_105 21113699

41. Glass Z, Lee M, Li Y, Xu Q. Engineering the delivery system for CRISPR-based genome editing. Trends Biotech. 2018;36:173–85.

42. Pan Y, Yang Y, Luan X, Liu X, Li X, Yang J, et al. Near-infrared upconversion-activated CRISPR-Cas9 system: a remote-controlled gene editing platform. Science Adv. 2019;5:eaav7199.

43. Reddy A, Zhang J, Davis NS, Moffitt AB, Love CL, Waldrop A, et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell. 2018;171:481–94.

44. Herscovitch M, Comb W, Ennis T, Coleman K, Yong S, Armstead B, et al. Intermolecular disulfide bond formation in the NEMO dimer requires Cys54 and Cys347. Biochem Biophys Res Commun. 2009;367:103–8.

45. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11:783–4. doi: 10.1038/nmeth.3047 25075903

46. Miyamoto S, Seufzer BJ, Shumway SD. Novel IκBα proteolytic pathway in WEHI231 immature B cells. Mol Cell Biol. 1998;18:19–29. doi: 10.1128/mcb.18.1.19 9418849

47. Jackson SS, Miyamoto S. Dissecting NF-κB signaling induced by genotoxic agents via genetic complementation of NEMO-deficient 1.3E2 cells. Methods Mol Biol. 2015;1280:197–215. doi: 10.1007/978-1-4939-2422-6_11 25736750


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#