#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Gene Cascade Finder: A tool for identification of gene cascades and its application in Caenorhabditis elegans


Autoři: Yusuke Nomoto aff001;  Yukihiro Kubota aff002;  Yuto Ohnishi aff001;  Kota Kasahara aff002;  Aimi Tomita aff001;  Takehiro Oshime aff001;  Hiroki Yamashita aff001;  Muhamad Fahmi aff002;  Masahiro Ito aff001
Působiště autorů: Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan aff001;  Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan aff002
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0215187

Souhrn

Obtaining a comprehensive understanding of the gene regulatory networks, or gene cascades, involved in cell fate determination and cell lineage segregation in Caenorhabditis elegans is a long-standing challenge. Although RNA-sequencing (RNA-Seq) is a promising technique to resolve these questions, the bioinformatics tools to identify associated gene cascades from RNA-Seq data remain inadequate. To overcome these limitations, we developed Gene Cascade Finder (GCF) as a novel tool for building gene cascades by comparison of mutant and wild-type RNA-Seq data along with integrated information of protein-protein interactions, expression timing, and domains. Application of GCF to RNA-Seq data confirmed that SPN-4 and MEX-3 regulate the canonical Wnt pathway during embryonic development. Moreover, lin-35, hsp-3, and gpa-12 were found to be involved in MEX-1-dependent neurogenesis, and MEX-3 was found to control the gene cascade promoting neurogenesis through lin-35 and apl-1. Thus, GCF could be a useful tool for building gene cascades from RNA-Seq data.

Klíčová slova:

Biology and life sciences – Cell biology – Genetics – Gene expression – Genomics – Genome analysis – Organisms – Eukaryota – Computational biology – Research and analysis methods – Animal studies – Experimental organism systems – Model organisms – Molecular biology – Neuroscience – Animals – Invertebrates – Animal models – Gene regulation – Molecular biology techniques – Nematoda – Caenorhabditis – Caenorhabditis elegans – Molecular biology assays and analysis techniques – Signal transduction – Cell signaling – Gene prediction – Signaling cascades – Wnt signaling cascade – Stress signaling cascade – Nucleic acid analysis – RNA analysis – Developmental neuroscience


Zdroje

1. English J, Pearson G, Wilsbacher J, Swantek J, Karandikar M, Xu S, et al. New insights into the control of MAP kinase pathways. Experimental cell research. 1999;253(1):255–70. Epub 1999/12/02. doi: 10.1006/excr.1999.4687 10579927.

2. Maduro MF, Rothman JH. Making worm guts: the gene regulatory network of the Caenorhabditis elegans endoderm. Developmental biology. 2002;246(1):68–85. Epub 2002/05/25. doi: 10.1006/dbio.2002.0655 12027435.

3. Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental biology. 1983;100(1):64–119. Epub 1983/11/01. doi: 10.1016/0012-1606(83)90201-4 6684600.

4. Lai CH, Chou CY, Ch'ang LY, Liu CS, Lin W. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome research. 2000;10(5):703–13. Epub 2000/05/16. doi: 10.1101/gr.10.5.703 10810093; PubMed Central PMCID: PMCPMC310876.

5. Schubert CM, Lin R, de Vries CJ, Plasterk RH, Priess JR. MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos. Molecular cell. 2000;5(4):671–82. Epub 2000/07/06. 10882103.

6. Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature. 2000;408(6810):325–30. Epub 2000/12/01. doi: 10.1038/35042517 11099033.

7. Mello CC, Draper BW, Krause M, Weintraub H, Priess JR. The pie-1 and mex-1 genes and maternal control of blastomere identity in early C. elegans embryos. Cell. 1992;70(1):163–76. Epub 1992/07/10. doi: 10.1016/0092-8674(92)90542-k 1623520.

8. Ogura K, Kishimoto N, Mitani S, Gengyo-Ando K, Kohara Y. Translational control of maternal glp-1 mRNA by POS-1 and its interacting protein SPN-4 in Caenorhabditis elegans. Development (Cambridge, England). 2003;130(11):2495–503. Epub 2003/04/19. doi: 10.1242/dev.00469 12702662.

9. Tsuboi D, Qadota H, Kasuya K, Amano M, Kaibuchi K. Isolation of the interacting molecules with GEX-3 by a novel functional screening. Biochemical and biophysical research communications. 2002;292(3):697–701. Epub 2002/04/02. doi: 10.1006/bbrc.2002.6717 11922622.

10. Dorfman M, Gomes JE, O'Rourke S, Bowerman B. Using RNA interference to identify specific modifiers of a temperature-sensitive, embryonic-lethal mutation in the Caenorhabditis elegans ubiquitin-like Nedd8 protein modification pathway E1-activating gene rfl-1. Genetics. 2009;182(4):1035–49. Epub 2009/06/17. doi: 10.1534/genetics.109.104885 19528325; PubMed Central PMCID: PMCPMC2728846.

11. Gomes JE, Encalada SE, Swan KA, Shelton CA, Carter JC, Bowerman B. The maternal gene spn-4 encodes a predicted RRM protein required for mitotic spindle orientation and cell fate patterning in early C. elegans embryos. Development (Cambridge, England). 2001;128(21):4301–14. Epub 2001/10/31. 11684665.

12. Hallam SJ, Goncharov A, McEwen J, Baran R, Jin Y. SYD-1, a presynaptic protein with PDZ, C2 and rhoGAP-like domains, specifies axon identity in C. elegans. Nature neuroscience. 2002;5(11):1137–46. Epub 2002/10/16. doi: 10.1038/nn959 12379863.

13. Guedes S, Priess JR. The C. elegans MEX-1 protein is present in germline blastomeres and is a P granule component. Development (Cambridge, England). 1997;124(3):731–9. Epub 1997/02/01. 9043088.

14. Huang NN, Mootz DE, Walhout AJ, Vidal M, Hunter CP. MEX-3 interacting proteins link cell polarity to asymmetric gene expression in Caenorhabditis elegans. Development (Cambridge, England). 2002;129(3):747–59. Epub 2002/02/07. 11830574.

15. Pagano JM, Farley BM, McCoig LM, Ryder SP. Molecular basis of RNA recognition by the embryonic polarity determinant MEX-5. The Journal of biological chemistry. 2007;282(12):8883–94. Epub 2007/02/01. doi: 10.1074/jbc.M700079200 17264081.

16. Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, et al. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature. 2005;434(7032):462–9. Epub 2005/03/26. doi: 10.1038/nature03353 15791247.

17. Consortium. CeS. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science (New York, NY). 1998;282(5396):2012–8. Epub 1998/12/16. doi: 10.1126/science.282.5396.2012 9851916.

18. Bumgarner R. Overview of DNA microarrays: types, applications, and their future. Current protocols in molecular biology. 2013;Chapter 22:Unit 22.1. Epub 2013/01/05. doi: 10.1002/0471142727.mb2201s101 23288464; PubMed Central PMCID: PMCPMC4011503.

19. Han X, Aslanian A, Yates JR 3rd., Mass spectrometry for proteomics. Current opinion in chemical biology. 2008;12(5):483–90. Epub 2008/08/23. doi: 10.1016/j.cbpa.2008.07.024 18718552; PubMed Central PMCID: PMCPMC2642903.

20. Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: biology, mechanism, and applications. Microbiology and molecular biology reviews: MMBR. 2003;67(4):657–85. Epub 2003/12/11. doi: 10.1128/MMBR.67.4.657-685.2003 14665679; PubMed Central PMCID: PMCPMC309050.

21. Bazan J, Calkosinski I, Gamian A. Phage display—a powerful technique for immunotherapy: 1. Introduction and potential of therapeutic applications. Human vaccines & immunotherapeutics. 2012;8(12):1817–28. Epub 2012/08/22. doi: 10.4161/hv.21703 22906939; PubMed Central PMCID: PMCPMC3656071.

22. Bruckner A, Polge C, Lentze N, Auerbach D, Schlattner U. Yeast two-hybrid, a powerful tool for systems biology. International journal of molecular sciences. 2009;10(6):2763–88. Epub 2009/07/08. doi: 10.3390/ijms10062763 19582228; PubMed Central PMCID: PMCPMC2705515.

23. Stein L, Sternberg P, Durbin R, Thierry-Mieg J, Spieth J. WormBase: network access to the genome and biology of Caenorhabditis elegans. Nucleic acids research. 2001;29(1):82–6. Epub 2000/01/11. doi: 10.1093/nar/29.1.82 11125056; PubMed Central PMCID: PMCPMC29781.

24. Besser J, Carleton HA, Gerner-Smidt P, Lindsey RL, Trees E. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2018;24(4):335–41. Epub 2017/10/28. doi: 10.1016/j.cmi.2017.10.013 29074157; PubMed Central PMCID: PMCPMC5857210.

25. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews Genetics. 2009;10(1):57–63. Epub 2008/11/19. doi: 10.1038/nrg2484 19015660; PubMed Central PMCID: PMCPMC2949280.

26. Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics (Oxford, England). 2012;28(16):2184–5. Epub 2012/06/30. doi: 10.1093/bioinformatics/bts356 22743226.

27. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature protocols. 2012;7(3):562–78. Epub 2012/03/03. doi: 10.1038/nprot.2012.016 22383036; PubMed Central PMCID: PMCPMC3334321.

28. Nicolae M, Mangul S, Mandoiu, II, Zelikovsky A. Estimation of alternative splicing isoform frequencies from RNA-Seq data. Algorithms for molecular biology: AMB. 2011;6(1):9. Epub 2011/04/21. doi: 10.1186/1748-7188-6-9 21504602; PubMed Central PMCID: PMCPMC3107792.

29. Alexa A, Rahnenfuhrer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics (Oxford, England). 2006;22(13):1600–7. Epub 2006/04/12. doi: 10.1093/bioinformatics/btl140 16606683.

30. Jung N, Bertrand F, Bahram S, Vallat L, Maumy-Bertrand M. Cascade: a R package to study, predict and simulate the diffusion of a signal through a temporal gene network. Bioinformatics (Oxford, England). 2014;30(4):571–3. Epub 2013/12/07. doi: 10.1093/bioinformatics/btt705 24307703.

31. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic acids research. 2015;43(Database issue):D447–52. Epub 2014/10/30. doi: 10.1093/nar/gku1003 25352553; PubMed Central PMCID: PMCPMC4383874.

32. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction datasets. Nucleic acids research. 2006;34(Database issue):D535–9. Epub 2005/12/31. doi: 10.1093/nar/gkj109 16381927; PubMed Central PMCID: PMCPMC1347471.

33. Mitani S., Nematode an experimental animal in the national BioResource project. Experimental animals. 2009;58(4):351–6. Epub 2009/08/06. doi: 10.1538/expanim.58.351 19654432.

34. Motohashi T, Tabara H, Kohara Y. Protocols for large scale in situ hybridization on C. elegans larvae. WormBook: the online review of C elegans biology. 2006:1–8. Epub 2007/12/01. doi: 10.1895/wormbook.1.103.1 18050447; PubMed Central PMCID: PMCPMC4781301.

35. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England). 2014;30(15):2114–20. Epub 2014/04/04. doi: 10.1093/bioinformatics/btu170 24695404; PubMed Central PMCID: PMCPMC4103590.

36. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology. 2014;15(12):550. Epub 2014/12/18. doi: 10.1186/s13059-014-0550-8 25516281; PubMed Central PMCID: PMCPMC4302049.

37. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature methods. 2008;5(7):621–8. Epub 2008/06/03. doi: 10.1038/nmeth.1226 18516045.

38. Lamarre S, Frasse P, Zouine M, Labourdette D, Sainderichin E, Hu G, et al. Optimization of an RNA-Seq Differential Gene Expression Analysis Depending on Biological Replicate Number and Library Size. Frontiers in plant science. 2018;9:108. Epub 2018/03/02. doi: 10.3389/fpls.2018.00108 29491871; PubMed Central PMCID: PMCPMC5817962.

39. Raabe CA, Voss R, Kummerfeld DM, Brosius J, Galiveti CR, Wolters A, et al. Ectopic expression of Snord115 in choroid plexus interferes with editing but not splicing of 5-Ht2c receptor pre-mRNA in mice. Scientific reports. 2019;9(1):4300. Epub 2019/03/14. doi: 10.1038/s41598-019-39940-6 30862860; PubMed Central PMCID: PMCPMC6414643.

40. Consortium GO. Gene Ontology Consortium: going forward. Nucleic acids research. 2015;43(Database issue):D1049–56. Epub 2014/11/28. doi: 10.1093/nar/gku1179 25428369; PubMed Central PMCID: PMCPMC4383973.

41. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, et al. The Pfam protein families database. Nucleic acids research. 2004;32(Database issue):D138–41. Epub 2003/12/19. doi: 10.1093/nar/gkh121 14681378; PubMed Central PMCID: PMCPMC308855.

42. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, et al. UniProt: the Universal Protein knowledgebase. Nucleic acids research. 2004;32(Database issue):D115–9. Epub 2003/12/19. doi: 10.1093/nar/gkh131 14681372; PubMed Central PMCID: PMCPMC308865.

43. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research. 2003;13(11):2498–504. Epub 2003/11/05. doi: 10.1101/gr.1239303 14597658; PubMed Central PMCID: PMCPMC403769.

44. Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic acids research. 2013;41(Database issue):D377–86. Epub 2012/11/30. doi: 10.1093/nar/gks1118 23193289; PubMed Central PMCID: PMCPMC3531194.

45. Thorpe CJ, Schlesinger A, Carter JC, Bowerman B. Wnt signaling polarizes an early C. elegans blastomere to distinguish endoderm from mesoderm. Cell. 1997;90(4):695–705. Epub 1997/08/22. doi: 10.1016/s0092-8674(00)80530-9 9288749.

46. Abraham T, Pin CL, Watson AJ. Embryo collection induces transient activation of XBP1 arm of the ER stress response while embryo vitrification does not. Molecular human reproduction. 2012;18(5):229–42. Epub 2011/12/14. doi: 10.1093/molehr/gar076 22155729.

47. Kyriakakis E, Charmpilas N, Tavernarakis N. Differential adiponectin signalling couples ER stress with lipid metabolism to modulate ageing in C. elegans. Scientific reports. 2017;7(1):5115. Epub 2017/07/13. doi: 10.1038/s41598-017-05276-2 28698593; PubMed Central PMCID: PMCPMC5505976.

48. Desai C, Horvitz HR. Caenorhabditis elegans mutants defective in the functioning of the motor neurons responsible for egg laying. Genetics. 1989;121(4):703–21. Epub 1989/04/01. 2721931; PubMed Central PMCID: PMCPMC1203655.

49. Kohn RE, Duerr JS, McManus JR, Duke A, Rakow TL, Maruyama H, et al. Expression of multiple UNC-13 proteins in the Caenorhabditis elegans nervous system. Molecular biology of the cell. 2000;11(10):3441–52. Epub 2000/10/12. doi: 10.1091/mbc.11.10.3441 11029047; PubMed Central PMCID: PMCPMC15005.

50. Pan CL, Baum PD, Gu M, Jorgensen EM, Clark SG, Garriga G. C. elegans AP-2 and retromer control Wnt signaling by regulating mig-14/Wntless. Developmental cell. 2008;14(1):132–9. Epub 2007/12/28. doi: 10.1016/j.devcel.2007.12.001 18160346; PubMed Central PMCID: PMCPMC2709403.

51. Gottschalk A, Almedom RB, Schedletzky T, Anderson SD, Yates JR 3rd, Schafer WR. Identification and characterization of novel nicotinic receptor-associated proteins in Caenorhabditis elegans. The EMBO journal. 2005;24(14):2566–78. Epub 2005/07/02. doi: 10.1038/sj.emboj.7600741 15990870; PubMed Central PMCID: PMCPMC1176467.

52. Yau DM, Yokoyama N, Goshima Y, Siddiqui ZK, Siddiqui SS, Kozasa T. Identification and molecular characterization of the G alpha12-Rho guanine nucleotide exchange factor pathway in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(25):14748–53. Epub 2003/12/06. doi: 10.1073/pnas.2533143100 14657363; PubMed Central PMCID: PMCPMC299794.

53. Lehner B, Calixto A, Crombie C, Tischler J, Fortunato A, Chalfie M, et al. Loss of LIN-35, the Caenorhabditis elegans ortholog of the tumor suppressor p105Rb, results in enhanced RNA interference. Genome biology. 2006;7(1):R4. Epub 2006/03/02. doi: 10.1186/gb-2006-7-1-r4 16507136; PubMed Central PMCID: PMCPMC1431716.

54. Bowerman B, Ingram MK, Hunter CP. The maternal par genes and the segregation of cell fate specification activities in early Caenorhabditis elegans embryos. Development (Cambridge, England). 1997;124(19):3815–26. Epub 1997/11/21. 9367437.

55. Clement A, Solnica-Krezel L, Gould KL. Functional redundancy between Cdc14 phosphatases in zebrafish ciliogenesis. Developmental dynamics: an official publication of the American Association of Anatomists. 2012;241(12):1911–21. Epub 2012/10/03. doi: 10.1002/dvdy.23876 23027426; PubMed Central PMCID: PMCPMC3508521.

56. Hornsten A, Lieberthal J, Fadia S, Malins R, Ha L, Xu X, et al. APL-1, a Caenorhabditis elegans protein related to the human beta-amyloid precursor protein, is essential for viability. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(6):1971–6. Epub 2007/02/03. doi: 10.1073/pnas.0603997104 17267616; PubMed Central PMCID: PMCPMC1794273.

57. Bae YK, Barr MM. Sensory roles of neuronal cilia: cilia development, morphogenesis, and function in C. elegans. Frontiers in bioscience: a journal and virtual library. 2008;13:5959–74. Epub 2008/05/30. 18508635; PubMed Central PMCID: PMCPMC3124812.

58. Hunter CP, Kenyon C. Spatial and temporal controls target pal-1 blastomere-specification activity to a single blastomere lineage in C. elegans embryos. Cell. 1996;87(2):217–26. Epub 1996/10/18. doi: 10.1016/s0092-8674(00)81340-9 8861906.

59. Iioka H, Macara IG. Detection of RNA-Protein Interactions Using Tethered RNA Affinity Capture. Methods in molecular biology (Clifton, NJ). 2015;1316:67–73. Epub 2015/05/15. doi: 10.1007/978-1-4939-2730-2_6 25967053; PubMed Central PMCID: PMCPMC6047865.

60. Langer-Safer PR, Levine M, Ward DC. Immunological method for mapping genes on Drosophila polytene chromosomes. Proceedings of the National Academy of Sciences of the United States of America. 1982;79(14):4381–5. Epub 1982/07/01. doi: 10.1073/pnas.79.14.4381 6812046; PubMed Central PMCID: PMCPMC346675.


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#