#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Plasma chemistry in nesting leatherback sea turtles (Dermochelys coriacea) from Florida: Understanding the importance of sample hemolysis effects on blood analytes


Autoři: Nicole I. Stacy aff001;  Ryan M. Chabot aff003;  Charles J. Innis aff004;  Carolyn Cray aff002;  Katelyn M. Fraser aff005;  Kimberly S. Rigano aff005;  Justin R. Perrault aff005
Působiště autorů: Aquatic, Amphibian, and Reptile Pathology Program, Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America aff001;  Division of Comparative Pathology, Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America aff002;  Inwater Research Group, Inc., Jensen Beach, Florida, United States of America aff003;  New England Aquarium, Boston, Massachusetts, United States of America aff004;  Loggerhead Marinelife Center, Juno Beach, Florida, United States of America aff005
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222426

Souhrn

Plasma chemistry is widely used in diagnostic and research settings in sea turtles. However, plasma discolorations such as hemolysis are often not considered in data interpretation. The objectives of this study were to (1) evaluate the effects of moderate hemolysis on plasma electrolytes, minerals, and proteins using dry chemistry analysis (DCA) and protein electrophoresis from nesting leatherback sea turtles (Dermochelys coriacea) from Florida and to (2) establish blood analyte reference intervals. Twenty-six plasma samples with absence of hemolysis were selected and sub-divided into one non-hemolytic aliquot and an aliquot that was experimentally manipulated to mimic moderate hemolysis. Plasma samples were analyzed for hemoglobin using a handheld photometer; sodium, potassium, chloride, magnesium, calcium, phosphorus, and total protein using DCA; and protein electrophoresis. Packed cell volume and hemoglobin were measured in corresponding whole blood samples. Reference intervals were established. All analytes except calcium and pre-albumin were significantly higher and the calcium:phosphorus and albumin:globulin ratios were significantly lower in hemolytic plasma compared to non-hemolytic plasma. Alpha2-globulins and potassium were the analytes most impacted by hemolysis, averaging 3.3- and 2.0-fold higher in hemolyzed samples, respectively, indicating that (1) hemoglobin migrates into the alpha2-globulin region in this species and (2) notable intracellular potassium is released into plasma with hemolysis. Attempted conversion factors for compensation of hemolysis were considered inaccurate for 4 of 16 analytes due to non-significant regression lines. We also report that PCV provides an estimate of hemoglobin (g/L) using the formula: (2.59 × PCV) + 24.59. Given the spurious effects of hemolysis, the degree of this artifact should be reported with biochemistry data, and samples with moderate to severe hemolysis should be excluded from datasets when interpreting electrolyte, mineral, and protein results. This will ensure accurate data interpretation for individual turtles in rehabilitation or research settings and population-level data relevant to conservation-focused projects.

Klíčová slova:

Biology and life sciences – Biochemistry – Organisms – Eukaryota – Physical sciences – Chemistry – Proteins – Animals – Anatomy – Medicine and health sciences – Physiology – Vertebrates – Amniotes – Hemoglobin – Body fluids – Blood – Blood plasma – Reptiles – Analytical chemistry – Testudines – Turtles – Plasma proteins – Albumins – Electrochemistry – Electrolytes – Chemical analysis


Zdroje

1. Stacy NI, Innis CJ. Clinical Pathology. In: Manire CA, Norton TM, Stacy BA, Harms CA, Innis CJ, editors. Sea Turtle Health and Rehabilitation. Plantation, FL: J. Ross Publishing. 2017. p. 147–207.

2. Gunn‐Christie RG, Flatland B, Friedrichs KR, Szladovits B, Harr KE, Ruotsalo K, et al. ASVCP quality assurance guidelines: control of preanalytical, analytical, and postanalytical factors for urinalysis, cytology, and clinical chemistry in veterinary laboratories. Vet Clin Pathol. 2012;41(1):18–26. doi: 10.1111/j.1939-165X.2012.00412.x 22390424

3. Simundic AM. Preanalytical variation. In: Rifai N, Horvath AR, Wittwer CT, editors. Tietz Fundamentals of Clinical Chemistry and Molecular Diagnostics, 8th ed. St. Louis (MI): Elsevier, 2019. p. 39–50.

4. Harvey JW. Veterinary Hematology: A Diagnostic Guide and Color Atlas. 1st ed. St. Louis (MI): Elsevier Saunders. 2012.

5. Thrall MA, Weise G, Allison RW, Campbell TW. Veterinary Hematology and Chemistry, 2nd ed. Ames (IA): Wiley-Blackwell; 2012.

6. Benson KG, Paul-Murphy J, MacWilliams P. Effects of hemolysis on plasma electrolyte and chemistry values in the common green iguana (Iguana iguana). J Zoo Wildl Med. 1999;30(3): 413–415. 10572866

7. Giménez M, Saco Y, Pato R, Busquets A, Martorell JM, Bassols A. Plasma protein electrophoresis of Trachemys scripta and Iguana iguana. Vet Clin Pathol. 2010;39(2):227–35. doi: 10.1111/j.1939-165X.2009.00204.x 20059755

8. Hawkins MG, Kass PH, Zinkl JG, Tell LA. Comparison of biochemical values in serum and plasma, fresh and frozen plasma, and hemolyzed samples from orange‐winged Amazon parrots (Amazona amazonica). Vet Clin Pathol. 2006;35(2):219–25. 16783717

9. Mirghaed AT, Ghelichpour M, Hoseini SM, Amini K. Hemolysis interference in measuring fish plasma biochemical indicators. Fish Physiol Biochem. 2017;43(4):1143–51. doi: 10.1007/s10695-017-0359-y 28293862

10. Roman Y, Bomsel-Demontoy MC, Levrier J, Chaste-Duvernoy D, Jalme MS. Effect of hemolysis on plasma protein levels and plasma electrophoresis in birds. J Wildl Dis. 2009;45(1):73–80. doi: 10.7589/0090-3558-45.1.73 19204337

11. IUCN Red List. https://www.iucnredlist.org/species/6494/43526147 Accessed March 26, 2019

12. Deem SL, Dierenfeld ES, Sounguet GP, Alleman AR, Cray C, Poppenga RH, et al. Blood values in free-ranging nesting leatherback sea turtles (Dermochelys coriacea) on the coast of the Republic of Gabon. J Zoo Wildl Med. 2006;37(4):464–72. doi: 10.1638/05-102.1 17315430

13. Deem SL, Norton TM, Mitchell M, Segars AL, Alleman AR, Cray C, et al. Comparison of blood values in foraging, nesting, and stranded loggerhead turtles (Caretta caretta) along the coast of Georgia, USA. J Wildl Dis. 2009;45(1):41–56. doi: 10.7589/0090-3558-45.1.41 19204334

14. Harms CA, Eckert SA, Kubis SA, Campbell M, Levenson DH, Crognale MA. Field anaesthesia of leatherback sea turtles (Dermochelys coriacea). Vet Rec. 2007;161(1):15–21. doi: 10.1136/vr.161.1.15 17617540

15. Harris HS, Benson SR, Gilardi KV, Poppenga RH, Work TM, Dutton PH, et al. Comparative health assessment of western Pacific leatherback turtles (Dermochelys coriacea) foraging off the coast of California, 2005–2007. J Wildl Dis. 2011;47(2):321–37. doi: 10.7589/0090-3558-47.2.321 21441185

16. Honarvar S, Brodsky MC, Fitzgerald DB, Rosenthal KL, Hearn GW. Changes in plasma chemistry and reproductive output of nesting leatherbacks. Herpetologica. 2011;67(3):222–235.

17. Innis C, Merigo C, Dodge K, Tlusty M, Dodge M, Sharp B, et al. Health evaluation of leatherback turtles (Dermochelys coriacea) in the northwestern Atlantic during direct capture and fisheries gear disentanglement. Chelonian Conserv Biol. 2010;9(2):205–22.

18. Perrault JR, Miller DL, Eads E, Johnson C, Merrill A, Thompson LJ, Wyneken J. Maternal health status correlates with nest success of leatherback sea turtles (Dermochelys coriacea) from Florida. PLoS ONE. 2012;7(2): e31841. doi: 10.1371/journal.pone.0031841 22359635

19. Perrault JR, Wyneken J, Page-Karjian A, Merrill A, Miller DL. Seasonal trends in nesting leatherback turtle (Dermochelys coriacea) serum proteins further verify capital breeding hypothesis. Conserv Physiol; 2014;2(1):cou002. doi: 10.1093/conphys/cou002 27293623

20. Perrault JR, Page-Karjian A, Miller DL. Nesting leatherback sea turtle (Dermochelys coriacea) packed cell volumes indicate decreased foraging during reproduction. Mar Biol. 2016;163(11):232.

21. Caliendo V, McKinney P, Robinson D, Baverstock W, Hyland K. Plasma biochemistry and hematology values in juvenile hawksbill turtles (Eretmochelys imbricata) undergoing rehabilitation. J Herp Med Surg. 2010; 20(4):117–21.

22. Harter TS, Reichert M, Brauner CJ, Milsom WK. Validation of the i-STAT and HemoCue systems for the analysis of blood parameters in the bar-headed goose, Anser indicus. Conserv Physiol. 2015;3:cov021. doi: 10.1093/conphys/cov021 27293706

23. Velguth KE, Payton ME, Hoover JP. Relationship of hemoglobin concentration to packed cell volume in avian blood samples. J Avian Med Surg. 2010;24:115–121. doi: 10.1647/2008-042.1 20806656

24. Dickey M, Cray C, Norton T, Murray M, Barysauskas C, Arheart KL, et al. Assessment of hemoglobin binding protein in loggerhead sea turtles (Caretta caretta) undergoing rehabilitation. J Zoo Wildl Med. 2014;45(3):700–3. doi: 10.1638/2013-0262R1.1 25314847

25. Flower JE, Byrd J, Cray C, Allender MC. Plasma electrophoretic profiles and hemoglobin binding protein reference intervals in the eastern box turtle (Terrapene carolina carolina) and influences of age, sex, season, and location. J Zoo Wildl Med. 2014;45(4):836–42. doi: 10.1638/2014-0035.1 25632671

26. R Core Team. R: A language and environment for statistical computing. 2017. http://www.r-project.org/

27. Hoaglin DC, Iglewicz B. Fine-tuning some resistant rules for outlier labeling. J Am Stat Assoc. 1996;82:1147–1149.

28. Friedrichs KR, Harr KE, Freeman KP, Szladovits B, Walton RM, Barnhart KF, et al. ASVCP reference interval guidelines: determination of de novo reference intervals in veterinary species and other related topics. Vet Clin Pathol. 2012; 41(4):441–53. doi: 10.1111/vcp.12006 23240820

29. Warton DI, Duursma RA, Falster DS, Taskinen S. smatr 3- an R package for estimation and inference about allometric lines. Methods Ecol Evol. 2012; 3(2):257–259. doi: 10.1111/j.2041-210X.2011.00153.x

30. Chabot RM, Ceriani SA, Seminoff JA, Mills KA, Mansfield KL. 2019. Characterizing stable isotope relationships between green turtle (Chelonia mydas) skin and unhatched eggs. Rapid Commun Mass Spectrom. 2019 Apr 29; doi: 10.1002/rcm.8467 31034695

31. Smith RJ. Use and misuse of the reduced major axis for line-fitting. Am J Phys Anthropol. 2009;140(3):476–486. doi: 10.1002/ajpa.21090 19425097

32. Warton DI, Wright IJ, Falster DS, Westoby M. Bivariate line-fitting methods for allometry. Biol Rev 2006; 81(02):259. doi: 10.1017/S1464793106007007 16573844

33. Andreasen CB, Andreasen JR, Thomas JS. Effects of hemolysis on serum chemistry analytes in ratites. Vet Clin Pathol. 1997;26(4):165–71. 12658578

34. Cadamuro J, Wiedemann H, Mrazek C, Felder TK, Oberkofler H, Fiedler GM, et al. The economic burden of hemolysis. Clin Chem Lab Med. 2015; 53(11):e285–8. doi: 10.1515/cclm-2015-0363 26035116

35. Innis CJ, Merigo C, Cavin JM, Hunt K, Dodge KL, Lutcavage M. Serial assessment of the physiological status of leatherback turtles (Dermochelys coriacea) during direct capture events in the northwestern Atlantic Ocean: comparison of post-capture and pre-release data. Conserv Physiol. 2014;2(1).

36. Mansour MM, Azzazy HM, Kazmierczak SC. Correction factors for estimating potassium concentrations in samples with in vitro hemolysis: a detriment to patient safety. Arch Pathol Lab Med. 2009;133(6):960–6. doi: 10.1043/1543-2165-133.6.960 19492890

37. Macrelli R, Ceccarelli M M, Fiorucci L. Determination of serum albumin concentration in healthy and diseased Hermann's tortoises (Testudo hermanni): a comparison using electrophoresis and the bromocresol green dye-binding method. J Herp Med Surg. 2013;23(1):20–4.

38. Cray C, Rodriguez M, Zaias J. Protein electrophoresis of psittacine plasma. Vet Clin Pathol. 2007;36(1):64–72. 17311197

39. Plot V, Jenkins T, Robin JP, Fossette S, Georges JY (2013) Leatherback turtles are capital breeders: morphometric and physiological evidence from longitudinal monitoring. Physiol Biochem Zool. 2013;86(4):385–97. doi: 10.1086/671127 23799833

40. Goldberg DW, Leitão SA, Godfrey MH, Lopez GG, Santos AJ, Neves FA, et al. Ghrelin and leptin modulate the feeding behaviour of the hawksbill turtle Eretmochelys imbricata during nesting season. Conserv Physiol. 2013;1(1):cot016. doi: 10.1093/conphys/cot016 27293600

41. Hirama S, Ehrhart LM, Rea LD, Kiltie RA. Relating fibropapilloma tumor severity to blood parameters in green turtles Chelonia mydas. Dis Aquat Org. 2014;111(1):61–8. doi: 10.3354/dao02765 25144118

42. Lewbart GA, Hirschfeld M, Denkinger J, Vasco K, Guevara N, García J, et al. Blood gases, biochemistry, and hematology of Galapagos green turtles (Chelonia mydas). PLoS One. 2014;9(5):e96487. doi: 10.1371/journal.pone.0096487 24824065

43. Bostrom BL, Jones TT, Hastings M, Jones DR. Behaviour and physiology: the thermal strategy of leatherback turtles. PLoS One. 2010 Nov 10;5(11):e13925. doi: 10.1371/journal.pone.0013925 21085716

44. Lutcavage ME, Bushnell PG, Jones DR. Oxygen stores and aerobic metabolism in the leatherback sea turtle. Can J Zool.1992;70(2):348–51.


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#