#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Lymphocyte proliferation induced by high-affinity peptides for HLA-B*51:01 in Behçet’s uveitis


Autoři: Toshikatsu Kaburaki aff001;  Hisae Nakahara aff001;  Rie Tanaka aff001;  Kimiko Okinaga aff001;  Hidetoshi Kawashima aff002;  Youichiro Hamasaki aff003;  Thanyada Rungrotmongkol aff004;  Supot Hannongbua aff005;  Hiroshi Noguchi aff006;  Makoto Aihara aff001;  Fujio Takeuchi aff007
Působiště autorů: Department of Ophthalmology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan aff001;  Department of Ophthalmology, Jichi Medical University, Tochigi, Japan aff002;  Department of Dermatology, Dokkyo Medical University, Tochigi, Japan aff003;  Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand aff004;  Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand aff005;  Department of Pharmacognosy, Nihon Pharmaceutical University, Saitama, Japan aff006;  Department of Pharmacology, University of Shizuoka, Shizuoka, Japan aff007;  Department of Health and Nutrition, Tokyo Seiei University, Tokyo, Japan aff008
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222384

Souhrn

Several proteins have been proposed as candidate auto-antigens in the pathogenesis of Behçet’s disease (BD). In this study, we aimed to confirm the cellular responses to candidate peptide autoantigens with high affinity for the HLA-B*51:01 molecule using computerized binding predictions and molecular dynamics simulations. We identified two new candidate peptides (HSP65PD, derived from heat shock protein-65, and B51PD, derived from HLA-B*51:01) with high-affinity to the HLA-B*51:01 binding pocket using the Immune Epitope Database for Major Histocompatibility Complex-I Binding Prediction and molecular dynamics simulations. The peptide-induced proliferation of lymphocytes from patients with BD, sarcoidosis, Vogt–Koyanagi–Harada disease (VKH) with panuveitis, systemic scleroderma (SSc) without uveitis, and healthy controls (HC) was investigated using the bromodeoxyuridine assay. The proliferative response of leukocytes to HSP65PD was significantly higher in BD (SI 1.92 ± 0.65) than that in sarcoidosis (SI 1.38 ± 0.46), VKH (SI 1.40 ± 0.33), SSc (SI 1.32 ± 0.31), and HC (SI 1.27 ± 0.28) (P = 0.0004, P = 0.0007, P < 0.0001, P < 0.0001, respectively, Mann-Whitney’s U-test). The proliferative response of leukocytes to B51PD was also higher in BD than that in sarcoidosis, VKH, SSc without uveitis, and HC, whereas no significant differences were observed among the five groups in response to a control peptide derived from topoisomerase 1. A significantly higher response to HPS65PD and B51PD was observed in the HLA-B*51:01-positive patients with BD than in the HLA-B*51:01-negative patients. In conclusion, two peptides that had high affinity to HLA-B*51:01 in computerized binding prediction showed significantly higher response in HLA-B*51:01-positive patients with BD, indicating the usefulness of computerized simulations for identifying autoreactive peptides to HLAs.

Klíčová slova:

Biology and life sciences – Cell biology – Cellular types – Animal cells – Anatomy – Medicine and health sciences – Pathology and laboratory medicine – Physiology – Rheumatology – Immunology – Body fluids – Blood – Blood cells – White blood cells – T cells – Immune cells – Ophthalmology – Inflammatory diseases – Lymphocytes – Sarcoidosis – Uveitis – Lymphocyte proliferation – Pathogenesis


Zdroje

1. Meguro A, Inoko H, Ota M, Katsuyama Y, Oka A, Okada E, et al. Genetics of Behçet disease inside and outside the MHC. Ann Rheum Dis. 2010;69: 747–754. doi: 10.1136/ard.2009.108571 19684014

2. de Menthon M, Lavalley MP, Maldini C, Guillevin L, Mahr A. HLA-B51/B5 and the risk of Behçet's disease: a systematic review and meta-analysis of case-control genetic association studies. Arthritis Rheumatol. 2009;61: 1287–1296. doi: 10.1002/art.24642 19790126

3. Rajendram R, Rao NA. Molecular mechanisms in Behçet’s disease. Br J Ophthalmol. 2003;87: 1199–1200. doi: 10.1136/bjo.87.10.1199 14507744

4. Yasuoka H, Yamaguchi Y, Mizuki N, Nishida T, Kawakami Y, Kuwana M. Preferential activation of circulating CD8+ and gamma delta T cells in patients with active Behçet's disease and HLA-B51. Clin Exp Rheumatol. 2008;26: S59–S63. 19026117

5. Chi W, Zhu X, Yang P, Liu X, Lin X, Zhou H, et al. Upregulated IL-23 and IL-17 in Behçet patients with active uveitis. Invest Ophthalmol Vis Sci. 2008;49: 3058–3064. doi: 10.1167/iovs.07-1390 18579762

6. Greco A, De Virgilio A, Ralli M, Ciofalo A, Mancini P, Attanasio G, et al. Behçet’s disease: New insights into pathophysiology, clinical features and treatment options. Autoimmun Rev. 2018;17: 567–575. doi: 10.1016/j.autrev.2017.12.006 29631062

7. Yamamoto JH, Minami M, Inaba G, Masuda K, Mochizuki M. Cellular autoimmunity to retinal specific antigens in patients with Behçet's disease. Br J Ophthalmol. 1993;77: 584–589. doi: 10.1136/bjo.77.9.584 8218058

8. de Smet MD, Bitar G, Mainigi S, Nussenblatt RB. Human S-antigen determinant recognition in uveitis. Invest Ophthalmol Vis Sci. 2001;42: 3233–3238. 11726628

9. Baharav E, Weinberger A. The HLA-B*5101 molecule-binding capacity to antigens used in animal models of Behçet's disease: a bioinformatics study. Isr Med Assoc J. 2012;14: 424–428. 22953618

10. Direskeneli H, Ekşioğlu-Demiralp E, Yavuz Ş, Ergun T, Shinnick T, Lehner T, et al. T cell responses to 60/65 kDa heat shock protein derived peptides in Turkish patients with Behçet’s disease. J Rheumatol. 2000;27: 708–713. 10743813

11. Kurhan-Yavuz S, Direskeneli H, Bozkurt N, Ozyazgan Y, Bavbek T, Kazokoglu H, et al. Anti-MHC autoimmunity in Behçet's disease: T cell responses to an HLA-B-derived peptide cross-reactive with retinal-S antigen in patients with uveitis. Clin Exp Immunol. 2000;120: 162–166. doi: 10.1046/j.1365-2249.2000.01176.x 10759778

12. Mahesh SP, Li Z, Buggage R, Mor F, Cohen IR, Chew EY, et al. Alpha tropomyosin as a self-antigen in patients with Behçet’s disease. Clin Exp Immunol. 2005;140: 368–375. doi: 10.1111/j.1365-2249.2005.02760.x 15807864

13. Wildner G, Thurau SR. Cross-reactivity between an HLA-B27-derived peptide and a retinal autoantigen peptide: a clue to major histocompatibility complex association with autoimmune disease. Eur J Immunol. 1994;24: 2579–2585. doi: 10.1002/eji.1830241103 7957552

14. Lundegaard C, Lund O, Nielsen M. Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. Bioinformatics. 2008;24: 1397–1398. doi: 10.1093/bioinformatics/btn128 18413329

15. Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, et al. Immune epitope database analysis resource. Nucleic Acids Res. 2012;4: W525–W530. doi: 10.1093/nar/gks438 22610854

16. Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, Buus S, et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003;12: 1007–1017. doi: 10.1110/ps.0239403 12717023

17. Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M. NetMHC-3.0: Accurate web accessible predictions of human, mouse, and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res. 2008;36: W509–W512. doi: 10.1093/nar/gkn202 18463140

18. Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics. 2016; 32: 511–517. doi: 10.1093/bioinformatics/btv639 26515819

19. Peters B, Sette A. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics. 2005;6: 132. doi: 10.1186/1471-2105-6-132 15927070

20. Sidney J, Assarsson E, Moore C, Ngo S, Pinilla C, Sette A, et al. Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res. 2008;4: 2. doi: 10.1186/1745-7580-4-2 18221540

21. Kongkaew S, Yotmanee P, Rungrotmongkol T, Kaiyawet N, Meeprasert A, Kaburaki T, et al. Molecular dynamics simulation reveals the selective binding of human leukocyte antigen alleles associated with Behçet's disease. PLoS One. 2015;10: e0135575. doi: 10.1371/journal.pone.0135575 26331842

22. Suzuki-Kurokawa M, Suzuki N. Behçet’s disease. Clin Exp Med. 2004;4: 10–20. 15598081

23. Shijubo N, Yamaguchi T. Diagnosis criteria and classification of disease severity for sarcoidosis in Japan. Jpn J Sarcoid Granulomatous Disord. 2015;35: 3–8. (in Japanese, with English abstract). doi: 10.7878/jjsogd.35.3

24. Read RW, Holland GN, Rao NA, Tabbara KF, Ohno S, Arellanes-Garcia L, et al. Revised diagnostic criteria for Vogt-Koyanagi Harada disease: report of an international committee on nomenclature. Am J Ophthalmol. 2001;131: 647–652. doi: 10.1016/s0002-9394(01)00925-4 11336942

25. Asano Y, Jinnin M, Kawaguchi Y, Kuwana M, Goto D, Sato S, et al. Diagnostic criteria, severity classification and guidelines of systemic sclerosis. J Dermatol. 2018;45: 633–691. doi: 10.1111/1346-8138.14162 29687465

26. Jabs DA, Nussenblatt RB, Rosenbaum JT, Standardization of Uveitis Nomenclature (SUN) Working Group. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol. 2005;140: 509–516. doi: 10.1016/j.ajo.2005.03.057 16196117

27. Nussenblatt RB, Palestine AG, Chan CC, Roberge F. Standardization of vitreal inflammatory activity in intermediate and posterior uveitis. Ophthalmology. 1985;92: 467–471. doi: 10.1016/s0161-6420(85)34001-0 4000641

28. Rizou C, Ioannidis JP, Panou-Pomonis E, Sakarellos-Daitsiotis M, Sakarellos C, Moutsopoulos HM, et al. B-cell epitope mapping of DNA topoisomerase I defines epitopes strongly associated with pulmonary fibrosis in systemic sclerosis. Am J Respir Cell Mol Biol. 2000;22: 344–351. doi: 10.1165/ajrcmb.22.3.3850 10696071

29. Veeraraghavan S, Renzoni EA, Jeal H, Jones M, Hammer J, Wells AU, et al. Mapping of the immunodominant T cell epitopes of the protein topoisomerase I. Ann Rheum Dis. 2004;63: 982–987. doi: 10.1136/ard.2003.008037 15249326

30. Kongkaew S, Rungrotmongkol T, Punwong C, Noguchi H, Takeuchi F, Kungwan N, et al. Interactions of HLA-DR and topoisomerase I epitope modulated genetic risk for systemic sclerosis. Sci Rep. 2019;9: 745. doi: 10.1038/s41598-018-37038-z 30679605

31. Basu D, Reveille JD. Anti-scl-70. Autoimmunity. 2005;38: 65–72. doi: 10.1080/08916930400022947 15804707


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#