#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Of Fighting Flies, Mice, and Men: Are Some of the Molecular and Neuronal Mechanisms of Aggression Universal in the Animal Kingdom?


Aggressive behavior is widespread in the animal kingdom, but the degree of molecular conservation between distantly related species is still unclear. Recent reports suggest that at least some of the molecular mechanisms underlying this complex behavior in flies show remarkable similarities with such mechanisms in mice and even humans. Surprisingly, some aspects of neuronal control of aggression also show remarkable similarity between these distantly related species. We will review these recent findings, address the evolutionary implications, and discuss the potential impact for our understanding of human diseases characterized by excessive aggression.


Vyšlo v časopise: Of Fighting Flies, Mice, and Men: Are Some of the Molecular and Neuronal Mechanisms of Aggression Universal in the Animal Kingdom?. PLoS Genet 11(8): e32767. doi:10.1371/journal.pgen.1005416
Kategorie: Review
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005416

Souhrn

Aggressive behavior is widespread in the animal kingdom, but the degree of molecular conservation between distantly related species is still unclear. Recent reports suggest that at least some of the molecular mechanisms underlying this complex behavior in flies show remarkable similarities with such mechanisms in mice and even humans. Surprisingly, some aspects of neuronal control of aggression also show remarkable similarity between these distantly related species. We will review these recent findings, address the evolutionary implications, and discuss the potential impact for our understanding of human diseases characterized by excessive aggression.


Zdroje

1. Miczek K a, Maxson SC, Fish EW, Faccidomo S (2001) Aggressive behavioral phenotypes in mice. Behav Brain Res 125: 167–181. 11682108

2. Watts DP, Muller M, Amsler SJ, Mbabazi G, Mitani JC (2006) Lethal intergroup aggression by chimpanzees in Kibale National Park, Uganda. Am J Primatol 68: 161–180. 16429415

3. Stevenson PA, Rillich J (2012) The decision to fight or flee—insights into underlying mechanism in crickets. Front Neurosci 6: 118. doi: 10.3389/fnins.2012.00118 22936896

4. Williams JM, Oehlert GW, Carlis J V., Pusey AE (2004) Why do male chimpanzees defend a group range? Anim Behav 68: 523–532.

5. Herrmann N, Cappell J, Eryavec GM, Lanctôt KL (2011) Changes in nursing burden following memantine for agitation and aggression in long-term care residents with moderate to severe Alzheimer’s disease: an open-label pilot study. CNS Drugs 25: 425–433. doi: 10.2165/11588160-000000000-00000 21476613

6. Langthorne P, McGill P (2012) An indirect examination of the function of problem behavior associated with fragile X syndrome and Smith-Magenis syndrome. J Autism Dev Disord 42: 201–209. doi: 10.1007/s10803-011-1229-6 21442360

7. Moskowitz LJ, Carr EG, Durand VM (2011) Behavioral intervention for problem behavior in children with fragile X syndrome. Am J Intellect Dev Disabil 116: 457–478. doi: 10.1352/1944-7558-116.6.457 22126659

8. Powell A, Flynn P, Rischbieth S, McKellar D (2014) Managing severe aggression in frontotemporal dementia. Australas Psychiatry 22: 86–89. doi: 10.1177/1039856213510576 24176944

9. Adams DB (2006) Brain mechanisms of aggressive behavior: an updated review. Neurosci Biobehav Rev 30: 304–318. 16289283

10. Comai S, Tau M, Gobbi G (2012) The psychopharmacology of aggressive behavior: a translational approach: part 1: neurobiology. J Clin Psychopharmacol 32: 83–94. 22198449

11. Nelson RJ, Trainor BC (2007) Neural mechanisms of aggression. Nat Rev Neurosci 8: 536–546. 17585306

12. Asahina K, Watanabe K, Duistermars BJ, Hoopfer E, González CR, et al. (2014) Tachykinin-Expressing Neurons Control Male-Specific Aggressive Arousal in Drosophila. Cell 156: 221–235. doi: 10.1016/j.cell.2013.11.045 24439378

13. Davis SM, Thomas AL, Nomie KJ, Huang L, Dierick HA (2014) Tailless and Atrophin control Drosophila aggression by regulating neuropeptide signalling in the pars intercerebralis. Nat Commun 5: 3177. doi: 10.1038/ncomms4177 24495972

14. Anderson DJ (2012) Optogenetics, sex, and violence in the brain: implications for psychiatry. Biol Psychiatry 71: 1081–1089. doi: 10.1016/j.biopsych.2011.11.012 22209636

15. Zwarts L, Versteven M, Callaerts P (2012) Genetics and neurobiology of aggression in Drosophila. Fly 6: 35–48. doi: 10.4161/fly.19249 22513455

16. Anholt RRH, Mackay TFC (2012) Genetics of aggression. Annu Rev Genet 46: 145–164. doi: 10.1146/annurev-genet-110711-155514 22934647

17. Fernández MP, Kravitz E a (2013) Aggression and courtship in Drosophila: pheromonal communication and sex recognition. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 199: 1065–1076. doi: 10.1007/s00359-013-0851-5 24043358

18. Haller J (2013) The neurobiology of abnormal manifestations of aggression—a review of hypothalamic mechanisms in cats, rodents, and humans. Brain Res Bull 93: 97–109. doi: 10.1016/j.brainresbull.2012.10.003 23085544

19. Gehring WJ, Ikeo K (1999) Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet 15: 371–377. 10461206

20. Kumar JP (2001) Signalling pathways in Drosophila and vertebrate retinal development. Nat Rev Genet 2: 846–857. 11715040

21. Fisher a. L, Caudy M (1998) Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev 12: 1931–1940. 9649497

22. Fritzsch B, Beisel KW (2001) Evolution of the Nervous System. Evolution and development of the vertebrate ear. Brain Res Bull 55: 711–721.

23. Hobert O, Westphal H (2000) Functions of LIM-homeobox genes. Trends Genet 16: 75–83. 10652534

24. Nieto MA (2002) The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3: 155–166. 11994736

25. Patient RK, McGhee JD (2002) The GATA family (vertebrates and invertebrates). Curr Opin Genet Dev 12: 416–422. 12100886

26. Weinmaster G (1997) The ins and outs of notch signaling. Mol Cell Neurosci 9: 91–102. 9245493

27. Hall JC (2005) Systems approaches to biological rhythms in Drosophila. Methods Enzymol 393: 61–185. 15817287

28. Hardin PE (2005) The circadian timekeeping system of Drosophila. Curr Biol 15: R714–22. 16139204

29. Rosato E, Kyriacou CP (2001) Flies, clocks and evolution. Philos Trans R Soc Lond B Biol Sci 356: 1769–1778. 11710984

30. Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 68: 2112–2116. 5002428

31. Takahashi JS (2004) Finding new clock components: past and future. J Biol Rhythms 19: 339–347. 15536063

32. Rosbash M (2015) Ronald J. Konopka (1947–2015). Cell 161: 187–188. 26042238

33. Greenspan RJ (1990) The emergence of neurogenetics. Semin Neurosci 2: 145–157.

34. Yu RT, McKeown M, Evans RM, Umesono K (1994) Relationship between Drosophila gap gene tailless and a vertebrate nuclear receptor Tlx. Nature 370: 375–379. 8047143

35. Monaghan AP, Bock D, Gass P, Schwäger A, Wolfer DP, et al. (1997) Defective limbic system in mice lacking the tailless gene. Nature 390: 515–517. 9394001

36. Roy K, Thiels E, Monaghan AP (2002) Loss of the tailless gene affects forebrain development and emotional behavior. Physiol Behav 77: 595–600. 12527005

37. Young KA, Berry ML, Mahaffey CL, Saionz JR, Hawes NL, et al. (2002) Fierce: a new mouse deletion of Nr2e1; violent behaviour and ocular abnormalities are background-dependent. Behav Brain Res 132: 145–158. 11997145

38. Abrahams BS, Kwok MCH, Trinh E, Budaghzadeh S, Hossain SM, et al. (2005) Pathological aggression in “fierce” mice corrected by human nuclear receptor 2E1. J Neurosci 25: 6263–6270. 16000615

39. Wang L, Rajan H, Pitman JL, McKeown M, Tsai C-C (2006) Histone deacetylase- associating Atrophin proteins are nuclear receptor corepressors. Genes Dev 20: 525–530. 16481466

40. Wang L, Tsai C-C (2008) Atrophin proteins: an overview of a new class of nuclear receptor corepressors. Nucl Recept Signal 6: e009. doi: 10.1621/nrs.06009 19043594

41. Zhang C-L, Zou Y, Yu RT, Gage FH, Evans RM (2006) Nuclear receptor TLX prevents retinal dystrophy and recruits the corepressor atrophin1. Genes Dev 20: 1308–1320. 16702404

42. Zhang S, Xu L, Lee J, Xu T (2002) Drosophila atrophin homolog functions as a transcriptional corepressor in multiple developmental processes. Cell 108: 45–56. 11792320

43. Yu RT, Chiang MY, Tanabe T, Kobayashi M, Yasuda K, et al. (2000) The orphan nuclear receptor Tlx regulates Pax2 and is essential for vision. Proc Natl Acad Sci U S A 97: 2621–2625. 10706625

44. Hartenstein V (2006) The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. J Endocrinol 190: 555–570. 17003257

45. Kruk MR (1991) Ethology and pharmacology of hypothalamic aggression in the rat. Neurosci Biobehav Rev 15: 527–538. 1792015

46. Lin D, Boyle MP, Dollar P, Lee H, Lein ES, et al. (2011) Functional identification of an aggression locus in the mouse hypothalamus. Nature 470: 221–226. doi: 10.1038/nature09736 21307935

47. Siegel a, Roeling T a, Gregg TR, Kruk MR (1999) Neuropharmacology of brain- stimulation-evoked aggression. Neurosci Biobehav Rev 23: 359–389. 9989425

48. Toth M, Fuzesi T, Halasz J, Tulogdi A, Haller J (2010) Neural inputs of the hypothalamic “aggression area” in the rat. Behav Brain Res 215: 7–20. doi: 10.1016/j.bbr.2010.05.050 20685366

49. Land PW, Monaghan AP (2003) Expression of the transcription factor, tailless, is required for formation of superficial cortical layers. Cereb Cortex 13: 921–931. 12902391

50. Casanova E, Fehsenfeld S, Mantamadiotis T, Lemberger T, Greiner E, et al. (2001) A CamKIIalpha iCre BAC allows brain-specific gene inactivation. Genesis 31: 37–42. 11668676

51. Belz T, Liu H-K, Bock D, Takacs A, Vogt M, et al. (2007) Inactivation of the gene for the nuclear receptor tailless in the brain preserving its function in the eye. Eur J Neurosci 26: 2222–2227. 17953618

52. Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, et al. (1994) Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 6: 9–13. 8136840

53. Nagafuchi S, Yanagisawa H, Ohsaki E, Shirayama T, Tadokoro K, et al. (1994) Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nat Genet 8: 177–182. 7842016

54. Adachi N, Arima K, Asada T, Kato M, Minami N, et al. (2001) Dentatorubral- pallidoluysian atrophy (DRPLA) presenting with psychosis. J Neuropsychiatry Clin Neurosci 13: 258–260. 11449034

55. Licht DJ, Lynch DR (2002) Juvenile dentatorubral-pallidoluysian atrophy: new clinical features. Pediatr Neurol 26: 51–54. 11814736

56. Yanagisawa H, Bundo M, Miyashita T, Okamura-Oho Y, Tadokoro K, et al. (2000) Protein binding of a DRPLA family through arginine-glutamic acid dipeptide repeats is enhanced by extended polyglutamine. Hum Mol Genet 9: 1433–1442. 10814707

57. Crespo-Barreto J, Fryer JD, Shaw C, Orr HT, Zoghbi HY (2010) Partial loss of ataxin-1 function contributes to transcriptional dysregulation in spinocerebellar ataxia type 1 pathogenesis. PLoS Genet 6: e1001021. doi: 10.1371/journal.pgen.1001021 20628574

58. Kandel E, Schwartz J, Jessell T (2000) Principles of Neural Science. New Jersey: McGraw-Hill Medical. 10634775

59. Strand F (1999) Neuropeptides. Cambridge, MA: MIT Press.

60. Nässel DR, Winther AME (2010) Drosophila neuropeptides in regulation of physiology and behavior. Prog Neurobiol 92: 42–104. doi: 10.1016/j.pneurobio.2010.04.010 20447440

61. Li Q, Deng X, Singh P (2007) Significant increase in the aggressive behavior of transgenic mice overexpressing peripheral progastrin peptides: associated changes in CCK2 and serotonin receptors in the CNS. Neuropsychopharmacology 32: 1813–1821. 17228339

62. Rutkoski NJ, Lerant AA, Nolte CM, Westberry J, Levenson CW (2002) Regulation of neuropeptide Y in the rat amygdala following unilateral olfactory bulbectomy. Brain Res 951: 69–76. 12231458

63. Caldwell HK, Lee H-J, Macbeth AH, Young WS (2008) Vasopressin: behavioral roles of an “original” neuropeptide. Prog Neurobiol 84: 1–24. 18053631

64. Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, et al. (2008) An internal thermal sensor controlling temperature preference in Drosophila. Nature 454: 217–220. doi: 10.1038/nature07001 18548007

65. Venken KJT, Simpson JH, Bellen HJ (2011) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72: 202–230. doi: 10.1016/j.neuron.2011.09.021 22017985

66. Haag ES, Doty AV (2005) Sex determination across evolution: connecting the dots. PLoS Biol 3: e21. 15660158

67. Salz HK (2011) Sex determination in insects: a binary decision based on alternative splicing. Curr Opin Genet Dev 21: 395–400. doi: 10.1016/j.gde.2011.03.001 21474300

68. Bhatt S, Gregg TR, Siegel A (2003) NK1 receptors in the medial hypothalamus potentiate defensive rage behavior elicited from the midbrain periaqueductal gray of the cat. Brain Res 966: 54–64. 12646308

69. Katsouni E, Sakkas P, Zarros A, Skandali N, Liapi C (2009) The involvement of substance P in the induction of aggressive behavior. Peptides 30: 1586–1591. doi: 10.1016/j.peptides.2009.05.001 19442694

70. Shaikh MB, Steinberg A, Siegel A (1993) Evidence that substance P is utilized in medial amygdaloid facilitation of defensive rage behavior in the cat. Brain Res 625: 283–294. 7506110

71. Coccaro EF, Lee R, Owens MJ, Kinkead B, Nemeroff CB (2012) Cerebrospinal fluid substance P-like immunoreactivity correlates with aggression in personality disordered subjects. Biol Psychiatry 72: 238–243. doi: 10.1016/j.biopsych.2012.02.023 22449753

72. Karl T, Herzog H (2007) Behavioral profiling of NPY in aggression and neuropsychiatric diseases. Peptides 28: 326–333. 17196302

73. Cansell C, Denis RGP, Joly-Amado A, Castel J, Luquet S (2012) Arcuate AgRP neurons and the regulation of energy balance. Front Endocrinol (Lausanne) 3: 169.

74. Foltenyi K, Andretic R, Newport JW, Greenspan RJ (2007) Neurohormonal and Neuromodulatory Control of Sleep in Drosophila. Cold Spring Harb Symp Quant Biol 72: 565–72. doi: 10.1101/sqb.2007.72.045 18419316

75. Griffith LC (2013) Neuromodulatory control of sleep in Drosophila melanogaster: integration of competing and complementary behaviors. Curr Opin Neurobiol 23: 819–823. doi: 10.1016/j.conb.2013.05.003 23743247

76. Kahsai L, Zars T (2011) Learning and memory in Drosophila: behavior, genetics, and neural systems. Int Rev Neurobiol 99: 139–167. doi: 10.1016/B978-0-12-387003-2.00006-9 21906539

77. Taghert PH, Nitabach MN (2012) Peptide neuromodulation in invertebrate model systems. Neuron 76: 82–97. doi: 10.1016/j.neuron.2012.08.035 23040808

78. Dembrow N, Johnston D (2014) Subcircuit-specific neuromodulation in the prefrontal cortex. Front Neural Circuits 8: 54. doi: 10.3389/fncir.2014.00054 24926234

79. De Velasco B, Erclik T, Shy D, Sclafani J, Lipshitz H, et al. (2007) Specification and development of the pars intercerebralis and pars lateralis, neuroendocrine command centers in the Drosophila brain. Dev Biol 302: 309–323. 17070515

80. Scharrer B, Scharrer E (1944) Neurosecretion VI. A comparison between the Intercerebralis-Cardiacum-Allatum system of insects and the Hypothalamo- Hypophyseal system of Vertebrates. Biol Bull 87: 242–251.

81. Lin C-Y, Chuang C-C, Hua T-E, Chen C-C, Dickson BJ, et al. (2013) A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain. Cell Rep 3: 1739–1753. doi: 10.1016/j.celrep.2013.04.022 23707064

82. Strausfeld NJ, Hirth F (2013) Homology versus convergence in resolving transphyletic correspondences of brain organization. Brain Behav Evol 82: 215–219. doi: 10.1159/000356102 24296550

83. Strausfeld NJ, Hirth F, Origin BF (2013) Deep Homology of Arthropod Central Complex and Vertebrate Basal Ganglia. 340: 157–162.

84. Rak-Mardyla A (2013) Ghrelin role in hypothalamus-pituitary-ovarian axis. J Physiol Pharmacol 64: 695–704. 24388883

85. Siga S (2003) Anatomy and functions of brain neurosecretory cells in diptera. Microsc Res Tech 62: 114–131. 12966498

86. Al-Anzi B, Armand E, Nagamei P, Olszewski M, Sapin V, et al. (2010) The leucokinin pathway and its neurons regulate meal size in Drosophila. Curr Biol 20: 969–978. doi: 10.1016/j.cub.2010.04.039 20493701

87. Crocker A, Shahidullah M, Levitan IB, Sehgal A (2010) Identification of a neural circuit that underlies the effects of octopamine on sleep:wake behavior. Neuron 65: 670–681. doi: 10.1016/j.neuron.2010.01.032 20223202

88. Foltenyi K, Greenspan RJ, Newport JW (2007) Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat Neurosci 10: 1160–1167. 17694052

89. Rajan A, Perrimon N (2012) Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 151: 123–137. doi: 10.1016/j.cell.2012.08.019 23021220

90. Rulifson EJ, Kim SK, Nusse R (2002) Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296: 1118–1120. 12004130

91. Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG (1996) Identification of targets of leptin action in rat hypothalamus. J Clin Invest 98: 1101–1106. 8787671

92. Stanley BG, Leibowitz SF (1985) Neuropeptide Y injected in the paraventricular hypothalamus: a powerful stimulant of feeding behavior. Proc Natl Acad Sci U S A 82: 3940–3943. 3858854

93. Teubner BJW, Bartness TJ (2013) PYY(3–36) into the arcuate nucleus inhibits food deprivation-induced increases in food hoarding and intake. Peptides 47: 20–28. doi: 10.1016/j.peptides.2013.05.005 23816798

94. Zandawala M (2012) Calcitonin-like diuretic hormones in insects. Insect Biochem Mol Biol 42: 816–825. doi: 10.1016/j.ibmb.2012.06.006 22820711

95. Ghosal K, Naples SP, Rabe AR, Killian KA (2010) Agonistic behavior and electrical stimulation of the antennae induces Fos-like protein expression in the male cricket brain. Arch Insect Biochem Physiol 74: 38–51. doi: 10.1002/arch.20360 20422717

96. Chi CC, Flynn JP (1971) Neuroanatomic projections related to biting attack elicited from hypothalamus in cats. Brain Res 35: 49–66. 5167403

97. Kruk MR, Van der Laan CE, Mos J, Van der Poel AM, Meelis W, et al. (1984) Comparison of aggressive behaviour induced by electrical stimulation in the hypothalamus of male and female rats. Prog Brain Res 61: 303–314. 6543251

98. Woodworth CH (1971) Attack elicited in rats by electrical stimulation of the lateral hypothalamus. Physiol Behav 6: 345–353. 4948213

99. Lipp HP, Hunsperger RW (1978) Threat, attack and flight elicited by electrical stimulation of the ventromedial hypothalamus of the marmoset monkey Callithrix jacchus. Brain Behav Evol 15: 260–293. 100172

100. Perachio AA, Alexander M, Marr LD (1973) Hormonal and social factors affecting evoked sexual behavior in Rhesus monkeys. Am J Phys Anthropol 38: 227–232. 4632072

101. Rosa M, Franzini A, Giannicola G, Messina G, Altamura AC, et al. (2012) Hypothalamic oscillations in human pathological aggressiveness. Biol Psychiatry 72: e33–5. doi: 10.1016/j.biopsych.2012.06.007 22789687

102. Dieckmann G, Schneider-Jonietz B, Schneider H (1988) Psychiatric and neuropsychological findings after stereotactic hypothalamotomy, in cases of extreme sexual aggressivity. Acta Neurochir Suppl (Wien) 44: 163–166.

103. Ramamurthi B (1988) Stereotactic operation in behaviour disorders. Amygdalotomy and hypothalamotomy. Acta Neurochir Suppl (Wien) 44: 152–157.

104. Sano K, Mayanagi Y, Sekino H, Ogashiwa M, Ishijima B (1970) Results of stimulation and destruction of the posterior hypothalamus in man. J Neurosurg 33: 689–707. 5488801

105. Franzini A, Messina G, Cordella R, Marras C, Broggi G (2010) Deep brain stimulation of the posteromedial hypothalamus: indications, long-term results, and neurophysiological considerations. Neurosurg Focus 29: E13.

106. Pedrosa-Sánchez M, Sola RG (2003) [Modern day psychosurgery: a new approach to neurosurgery in psychiatric disease]. Rev Neurol 36: 887–897. 12717678

107. Bejjani BP, Houeto JL, Hariz M, Yelnik J, Mesnage V, et al. (2002) Aggressive behavior induced by intraoperative stimulation in the triangle of Sano. Neurology 59: 1425–1427. 12427896

108. Reeves AG, Plum F (1969) Hyperphagia, rage, and dementia accompanying a ventromedial hypothalamic neoplasm. Arch Neurol 20: 616–624. 5769839

109. De Almeida AN, Fonoff ET, Ballester G, Teixeira MJ, Marino R (2008) Stereotactic disconnection of hypothalamic hamartoma to control seizure and behavior disturbance: case report and literature review. Neurosurg Rev 31: 343–349. doi: 10.1007/s10143-008-0142-8 18443834

110. Weissenberger AA, Dell ML, Liow K, Theodore W, Frattali CM, et al. (2001) Aggression and psychiatric comorbidity in children with hypothalamic hamartomas and their unaffected siblings. J Am Acad Child Adolesc Psychiatry 40: 696–703. 11392348

111. Baguñà J, Riutort M (2004) The dawn of bilaterian animals: the case of acoelomorph flatworms. Bioessays 26: 1046–1057. 15382134

112. Bailly X, Reichert H, Hartenstein V (2013) The urbilaterian brain revisited: novel insights into old questions from new flatworm clades. Dev Genes Evol 223: 149–157. doi: 10.1007/s00427-012-0423-7 23143292

113. Miller DJ, Ball EE (2009) The gene complement of the ancestral bilaterian—was Urbilateria a monster? J Biol 8: 89. doi: 10.1186/jbiol192 19939290

114. Michiels N, Newman L (1998) Sex and violence in hermaphrodites. Nature 266: 20560.

115. Zenner ANRL, O’Callaghan KM, Griffin CT (2014) Lethal Fighting in Nematodes Is Dependent on Developmental Pathway: Male-Male Fighting in the Entomopathogenic Nematode Steinernema longicaudum. PLoS One 9: e89385. doi: 10.1371/journal.pone.0089385 24586738

116. Sarin S, Antonio C, Tursun B, Hobert O (2009) The C. elegans Tailless/TLX transcription factor nhr-67 controls neuronal identity and left/right asymmetric fate diversification. Development 136: 2933–2944. doi: 10.1242/dev.040204 19641012

117. Adamidi C, Wang Y, Gruen D, Mastrobuoni G, You X, et al. (2011) De novo assembly and validation of planaria transcriptome by massive parallel sequencing and shotgun proteomics. Genome Res 21: 1193–1200. doi: 10.1101/gr.113779.110 21536722

118. Raška O, Kostrouchová V, Behenský F, Yilma P, Saudek V, et al. (2011) SMED- TLX-1 (NR2E1) is critical for tissue and body plan maintenance in Schmidtea mediterranea in fasting/feeding cycles. Folia Biol (Praha) 57: 223–231.

119. Mirabeau O, Joly J (2013) Molecular evolution of peptidergic signaling systems in bilaterians. Proc Natl Acad Sci U S A 110(22):E2028–37 doi: 10.1073/pnas.1219956110 23671109

120. Schilling G, Wood JD, Duan K, Slunt HH, Gonzales V, et al. (1999) Nuclear accumulation of truncated atrophin-1 fragments in a transgenic mouse model of DRPLA. Neuron 24: 275–286. 10677044

121. Schilling G, Jinnah HA, Gonzales V, Coonfield ML, Kim Y, et al. (2001) Distinct behavioral and neuropathological abnormalities in transgenic mouse models of HD and DRPLA. Neurobiol Dis 8: 405–418. 11442350

122. Amberger J, Bocchini C, Scott AF, Hamosh A (2009) McKusick’s Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Res 37: D793–6. doi: 10.1093/nar/gkn665 18842627

123. Oortveld MAW, Keerthikumar S, Oti M, Nijhof B, Fernandes AC, et al. (2013) Human intellectual disability genes form conserved functional modules in Drosophila. PLoS Genet 9: e1003911. doi: 10.1371/journal.pgen.1003911 24204314

124. Egger JI, Wingbermühle E, Verhoeven WM, Dijkman M, Radke S, et al. (2013) Hypersociability in the behavioral phenotype of 17q21.31 microdeletion syndrome. Am J Med Genet A 161A: 21–26. doi: 10.1002/ajmg.a.35652 23169757

125. Evans E, Einfeld S, Mowat D, Taffe J, Tonge B, et al. (2012) The behavioral phenotype of Mowat-Wilson syndrome. Am J Med Genet A 158A: 358–366. doi: 10.1002/ajmg.a.34405 22246645

126. Williams CA (2010) The behavioral phenotype of the Angelman syndrome. Am J Med Genet C Semin Med Genet 154C: 432–437. doi: 10.1002/ajmg.c.30278 20981772

127. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, et al. (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41: D808–15. doi: 10.1093/nar/gks1094 23203871

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#