#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Evidence for Retromutagenesis as a Mechanism for Adaptive Mutation in


The basic principle of neo-Darwinian genetics is that mutations occurring during growth enable the subsequent survival of the mutants under selective environmental conditions. However, new mutants can arise from a non-growing bacterial population during selection in an apparently Lamarckian way. The phenomenon is called adaptive mutation. In one suggested pathway, retromutagenesis, a damaged gene produces a mutant protein that enables enough growth for a mutant gene to be copied onto daughter chromosomes. This hypothesis is supported by evidence that, in several experimental systems, a damaged gene can produce a mutant protein rather than no protein at all, and that both RNA and DNA polymerase will pair the same base with a lesion. Because this model requires gene expression before DNA synthesis, a third feature is predicted: in a non-growing population, adaptive mutations will occur preferentially on the transcribed strand of a gene. In this paper, we describe a bacterial genetic system that can distinguish between mutations occurring on either DNA strand, and we use it to confirm this prediction. The findings enhance our general understanding of evolution in all organisms, the majority of which are in a non-growing state most of the time.


Vyšlo v časopise: Evidence for Retromutagenesis as a Mechanism for Adaptive Mutation in. PLoS Genet 11(8): e32767. doi:10.1371/journal.pgen.1005477
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005477

Souhrn

The basic principle of neo-Darwinian genetics is that mutations occurring during growth enable the subsequent survival of the mutants under selective environmental conditions. However, new mutants can arise from a non-growing bacterial population during selection in an apparently Lamarckian way. The phenomenon is called adaptive mutation. In one suggested pathway, retromutagenesis, a damaged gene produces a mutant protein that enables enough growth for a mutant gene to be copied onto daughter chromosomes. This hypothesis is supported by evidence that, in several experimental systems, a damaged gene can produce a mutant protein rather than no protein at all, and that both RNA and DNA polymerase will pair the same base with a lesion. Because this model requires gene expression before DNA synthesis, a third feature is predicted: in a non-growing population, adaptive mutations will occur preferentially on the transcribed strand of a gene. In this paper, we describe a bacterial genetic system that can distinguish between mutations occurring on either DNA strand, and we use it to confirm this prediction. The findings enhance our general understanding of evolution in all organisms, the majority of which are in a non-growing state most of the time.


Zdroje

1. Lederberg J, Lederberg EM (1952) Replica plating and indirect selection of bacterial mutants. J Bacteriol 63: 399–406. 14927572

2. Luria SE, Delbruck M (1943) Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics 28: 491–511. 17247100

3. Bridges BA (1994) Starvation-associated mutation in Escherichia coli: a spontaneous lesion hypothesis for "directed" mutation. Mutat Res 307: 149–156. 7513791

4. Cairns J, Overbaugh J, Miller S (1988) The origin of mutants. Nature 335: 142–145. 3045565

5. Ryan FJ, Okada T, Nagata T (1963) Spontaneous mutation in spheroplasts of Escherichia coli. J Gen Microbiol 30: 193–199. 13975747

6. Cairns J, Foster PL (1991) Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics 128: 695–701. 1916241

7. Roth JR, Kugelberg E, Reams AB, Kofoid E, Andersson DI (2006) Origin of mutations under selection: the adaptive mutation controversy. Annu Rev Microbiol 60: 477–501. 16761951

8. Davis BD (1989) Transcriptional bias: a non-Lamarckian mechanism for substrate-induced mutations. Proc Natl Acad Sci U S A 86: 5005–5009. 2740338

9. Doetsch PW (2002) Translesion synthesis by RNA polymerases: occurrence and biological implications for transcriptional mutagenesis. Mutation research 510: 131–140. 12459449

10. Bregeon D, Doetsch PW (2011) Transcriptional mutagenesis: causes and involvement in tumour development. Nat Rev Cancer 11: 218–227. 21346784 doi: 10.1038/nrc3006

11. Shockley AH, Doo DW, Rodriguez GP, Crouse GF (2013) Oxidative damage and mutagenesis in Saccharomyces cerevisiae: genetic studies of pathways affecting replication fidelity of 8-oxoguanine. Genetics 195: 359–367. 23893481 doi: 10.1534/genetics.113.153874

12. Rodriguez GP, Romanova NV, Bao G, Rouf NC, Kow YW, et al. (2012) Mismatch repair-dependent mutagenesis in nondividing cells. Proc Natl Acad Sci U S A 109: 6153–6158. 22474380 doi: 10.1073/pnas.1115361109

13. Shapiro R, Pohl SH (1968) The reaction of ribonucleosides with nitrous acid. Side products and kinetics. Biochemistry 7: 448–455. 5758560

14. Guo G, Ding Y, Weiss B (1997) nfi, the gene for endonuclease V in Escherichia coli K-12. J Bacteriol 179: 310–316. 8990280

15. Yao M, Kow YW (1996) Cleavage of insertion/deletion mismatches, flap and pseudo-Y DNA structures by deoxyinosine 3'-endonuclease from Escherichia coli. J Biol Chem 271: 30672–30676. 8940043

16. Yao M, Hatahet Z, Melamede RJ, Kow YW (1994) Purification and characterization of a novel deoxyinosine-specific enzyme, deoxyinosine 3' endonuclease, from Escherichia coli. J Biol Chem 269: 16260–16268. 8206931

17. Schouten KA, Weiss B (1999) Endonuclease V protects Escherichia coli against specific mutations caused by nitrous acid. Mutat Res 435: 245–254. 10606815

18. Diederich L, Rasmussen LJ, Messer W (1992) New cloning vectors for integration in the lambda attachment site attB of the Escherichia coli chromosome. Plasmid 28: 14–24. 1387714

19. Pastan I, Perlman RL (1969) Repression of beta-galactosidase synthesis by glucose in phosphotransferase mutants of Escherichia coli. Repression in the absence of glucose phosphorylation. J Biol Chem 244: 5836–5842. 4310826

20. Miller JH, Albertini AM (1983) Effects of surrounding sequence on the suppression of nonsense codons. J Mol Biol 164: 59–71. 6188840

21. Hanawalt PC, Spivak G (2008) Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 9: 958–970. 19023283 doi: 10.1038/nrm2549

22. Jinks-Robertson S, Bhagwat AS (2014) Transcription-associated mutagenesis. Annu Rev Genet 48: 341–359. 25251854 doi: 10.1146/annurev-genet-120213-092015

23. Caulfield JL, Wishnok JS, Tannenbaum SR (1998) Nitric oxide-induced deamination of cytosine and guanine in deoxynucleosides and oligonucleotides. J Biol Chem 273: 12689–12695. 9582291

24. Beletskii A, Bhagwat AS (1996) Transcription-induced mutations: increase in C to T mutations in the nontranscribed strand during transcription in Escherichia coli. Proc Natl Acad Sci U S A 93: 13919–13924. 8943036

25. Beletskii A, Bhagwat AS (1998) Correlation between transcription and C to T mutations in the non-transcribed DNA strand. Biol Chem 379: 549–551. 9628351

26. Grossman TH, Kawasaki ES, Punreddy SR, Osburne MS (1998) Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene 209: 95–103. 9524234

27. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41: 207–234. 15915565

28. Kogoma T (1997) Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 61: 212–238. 9184011

29. Riesenfeld C, Everett M, Piddock LJ, Hall BG (1997) Adaptive mutations produce resistance to ciprofloxacin. Antimicrob Agents Chemother 41: 2059–2060. 9303418

30. Dale GE, Broger C, D'Arcy A, Hartman PG, DeHoogt R, et al. (1997) A single amino acid substitution in Staphylococcus aureus dihydrofolate reductase determines trimethoprim resistance. J Mol Biol 266: 23–30. 9054967

31. Simonsen CC, Levinson AD (1983) Isolation and expression of an altered mouse dihydrofolate reductase cDNA. Proc Natl Acad Sci U S A 80: 2495–2499. 6573667

32. Gannon JV, Greaves R, Iggo R, Lane DP (1990) Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J 9: 1595–1602. 1691710

33. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, et al. (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352: 1779–1790. 15858187

34. Saxowsky TT, Meadows KL, Klungland A, Doetsch PW (2008) 8-Oxoguanine-mediated transcriptional mutagenesis causes Ras activation in mammalian cells. Proc Natl Acad Sci U S A 105: 18877–18882. 19020090 doi: 10.1073/pnas.0806464105

35. Sternberg NL, Maurer R (1991) Bacteriophage-mediated generalized transduction in Escherichia coli and Salmonella typhimurium. Methods Enzymol 204: 18–43. 1943777

36. Miller J (1993) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Trends in Biochemical Sciences-Library Compendium 18: 193.

37. Vogel HJ, Bonner DM (1956) Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem 218: 97–106. 13278318

38. Smith TF, Sadler JR (1971) The nature of lactose operator constitive mutations. J Mol Biol 59: 273–305. 4935786

39. Sheu DS, Wang YT, Lee CY (2000) Rapid detection of polyhydroxyalkanoate-accumulating bacteria isolated from the environment by colony PCR. Microbiology 146 (Pt 8): 2019–2025. 10931906

40. Agresti A (1992) A Survey of Exact Inference for Contingency Tables. Statistical Science 7: 131–153.

41. McDonald JH (2014) Handbook of Biological Statistics (3rd ed.). Baltimore, Maryland: Sparky House Publishing.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#