#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Discovery of Transcription Factors and Regulatory Regions Driving Tumor Development by ATAC-seq and FAIRE-seq Open Chromatin Profiling


The functional expression of all genes is regulated by proteins, namely transcription factors that bind to specific areas of DNA known as regulatory regions. Whereas most DNA in our genome is normally bound by other proteins (histones) and packaged into units called nucleosomes, a specific subset of tissue-specific regulatory regions is responsible for tissue-specific gene expression; these active regions are nucleosome-depleted and bound by transcription factors. We use two techniques to identify these open chromatin regions, in a normal tissue and a RasV12 induced cancer tissue. We discovered a remarkable change in the accessible regulatory landscape between these two tissues, with several thousand regions becoming more accessible in the cancer tissue. We identified two transcription factors known to be involved in cancer (AP-1 and Stat92E) controlling these newly accessible regulatory regions. Finally, we introduced a mutation resulting in Stat92E becoming non-functional in the cancer tissue, which decreased the severity of the tumor. Our study shows that open chromatin profiling can be used to identify complex in vivo processes, and we shed new light on Ras dependent cancer development.


Vyšlo v časopise: Discovery of Transcription Factors and Regulatory Regions Driving Tumor Development by ATAC-seq and FAIRE-seq Open Chromatin Profiling. PLoS Genet 11(2): e32767. doi:10.1371/journal.pgen.1004994
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004994

Souhrn

The functional expression of all genes is regulated by proteins, namely transcription factors that bind to specific areas of DNA known as regulatory regions. Whereas most DNA in our genome is normally bound by other proteins (histones) and packaged into units called nucleosomes, a specific subset of tissue-specific regulatory regions is responsible for tissue-specific gene expression; these active regions are nucleosome-depleted and bound by transcription factors. We use two techniques to identify these open chromatin regions, in a normal tissue and a RasV12 induced cancer tissue. We discovered a remarkable change in the accessible regulatory landscape between these two tissues, with several thousand regions becoming more accessible in the cancer tissue. We identified two transcription factors known to be involved in cancer (AP-1 and Stat92E) controlling these newly accessible regulatory regions. Finally, we introduced a mutation resulting in Stat92E becoming non-functional in the cancer tissue, which decreased the severity of the tumor. Our study shows that open chromatin profiling can be used to identify complex in vivo processes, and we shed new light on Ras dependent cancer development.


Zdroje

1. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, et al. (2012) The accessible chromatin landscape of the human genome. Nature 489: 75–82. doi: 10.1038/nature11232 22955617

2. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, et al. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489: 57–74. doi: 10.1038/nature11247 22955616

3. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13: 484–492. doi: 10.1038/nrg3230 22641018

4. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, et al. (2014) An atlas of active enhancers across human cell types and tissues. Nature 507: 455–461. doi: 10.1038/nature12787 24670763

5. Ernst J, Kellis M (2010) Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol 28: 817–825. doi: 10.1038/nbt.1662 20657582

6. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, et al. (2010) The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol 28: 1045–1048. doi: 10.1038/nbt1010-1045 20944595

7. Stergachis AB, Neph S, Reynolds A, Humbert R, Miller B, et al. (2013) Developmental fate and cellular maturity encoded in human regulatory DNA landscapes. Cell 154: 888–903. doi: 10.1016/j.cell.2013.07.020 23953118

8. Thomas S, Li X-Y, Sabo PJ, Sandstrom R, Thurman RE, et al. (2011) Dynamic reprogramming of chromatin accessibility during Drosophila embryo development. Genome Biol 12: R43. doi: 10.1186/gb-2011-12-5-r43 21569360

9. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD (2007) FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res 17: 877–885. 17179217

10. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10: 1213–1218. doi: 10.1038/nmeth.2688 24097267

11. Song L, Zhang Z, Grasfeder LL, Boyle AP, Giresi PG, et al. (2011) Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res 21: 1757–1767. doi: 10.1101/gr.121541.111 21750106

12. McKay DJ, Lieb JD (2013) A Common Set of DNA Regulatory Elements Shapes Drosophila Appendages. Dev Cell 27: 306–318. doi: 10.1016/j.devcel.2013.10.009 24229644

13. Adey A, Morrison HG, Asan, Xun X, Kitzman JO, et al. (2010) Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol 11: R119. doi: 10.1186/gb-2010-11-12-r119 21143862

14. Brumby AM, Richardson HE (2003) scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J 22: 5769–5779. 14592975

15. Gonzalez C (2013) Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 13: 172–183. doi: 10.1038/nrc3461 23388617

16. Wu M, Pastor-Pareja JC, Xu T (2010) Interaction between RasV12 and scribbled clones induces tumour growth and invasion. Nature 463: 545–548. doi: 10.1038/nature08702 20072127

17. Amore G, Casares F (2010) Size matters: the contribution of cell proliferation to the progression of the specification Drosophila eye gene regulatory network. Dev Biol 344: 569–577. doi: 10.1016/j.ydbio.2010.06.015 20599903

18. Treisman JE (2013) Retinal differentiation in Drosophila. Wiley Interdiscip Rev Dev Biol 2: 545–557. doi: 10.1002/wdev.100 24014422

19. Quan X, Ramaekers A, Hassan BA (2012) Transcriptional control of cell fate specification: lessons from the fly retina. Curr Top Dev Biol 98: 259–276. doi: 10.1016/B978-0-12-386499-4.00010-0 22305166

20. Kumar JP (2010) Retinal determination the beginning of eye development. Curr Top Dev Biol 93: 1–28. doi: 10.1016/B978-0-12-385044-7.00001-1 20959161

21. Jory A, Estella C, Giorgianni MW, Slattery M, Laverty TR, et al. (2012) A survey of 6,300 genomic fragments for cis-regulatory activity in the imaginal discs of Drosophila melanogaster. Cell Rep 2: 1014–1024. doi: 10.1016/j.celrep.2012.09.010 23063361

22. Jenett A, Rubin GM, Ngo T-TB, Shepherd D, Murphy C, et al. (2012) A GAL4-Driver Line Resource for Drosophila Neurobiology. Cell Rep 2: 991–1001. doi: 10.1016/j.celrep.2012.09.011 23063364

23. Boyle AP, Song L, Lee B-K, London D, Keefe D, et al. (2011) High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. Genome Res 21: 456–464. doi: 10.1101/gr.112656.110 21106903

24. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10: 1213–1218. doi: 10.1038/nmeth.2688 24097267

25. Lee T, Luo L (1999) Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis. Neuron 22: 451–461. 10197526

26. Khoo P, Allan K, Willoughby L, Brumby AM, Richardson HE (2013) In Drosophila, RhoGEF2 cooperates with activated Ras in tumorigenesis through a pathway involving Rho1-Rok-Myosin-II and JNK signalling. Dis Model Mech 6: 661–678. doi: 10.1242/dmm.010066 23324326

27. Külshammer E, Uhlirova M (2013) The actin cross-linker Filamin/Cheerio mediates tumor malignancy downstream of JNK signaling. J Cell Sci 126: 927–938. doi: 10.1242/jcs.114462 23239028

28. Pagliarini RA, Xu T (2003) A Genetic Screen in Drosophila for Metastatic Behavior. Science 302: 1227–1231. 14551319

29. Igaki T, Pagliarini RA, Xu T (2006) Loss of Cell Polarity Drives Tumor Growth and Invasion through JNK Activation in Drosophila. Curr Biol 16: 1139–1146. 16753569

30. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: 207–210. 11752295

31. Janic A, Mendizabal L, Llamazares S, Rossell D, Gonzalez C (2010) Ectopic Expression of Germline Genes Drives Malignant Brain Tumor Growth in Drosophila. Science 330: 1824–1827. doi: 10.1126/science.1195481 21205669

32. Herrmann C, Van de Sande B, Potier D, Aerts S (2012) i-cisTarget: an integrative genomics method for the prediction of regulatory features and cis-regulatory modules. Nucleic Acids Res 40: e114. doi: 10.1093/nar/gks543 22718975

33. Uhlirova M, Bohmann D (2006) JNK- and Fos-regulated Mmp1 expression cooperates with Ras to induce invasive tumors in Drosophila. EMBO J 25: 5294–5304. 17082773

34. Zhu M, Xin T, Weng S, Gao Y, Zhang Y, et al. (2010) Activation of JNK signaling links lgl mutations to disruption of the cell polarity and epithelial organization in Drosophila imaginal discs. Cell Res 20: 242–245. doi: 10.1038/cr.2010.2 20066009

35. Zhang L, Ren F, Zhang Q, Chen Y, Wang B, et al. (2008) The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell 14: 377–387. doi: 10.1016/j.devcel.2008.01.006 18258485

36. Doggett K, Grusche FA, Richardson HE, Brumby AM (2011) Loss of the Drosophila cell polarity regulator Scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras-Raf through impaired Hippo pathway signaling. BMC Dev Biol 11: 1–20. doi: 10.1186/1471-213X-11-1 21194500

37. Liang H-L, Nien C-Y, Liu H-Y, Metzstein MM, Kirov N, et al. (2008) The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature 456: 400–403. doi: 10.1038/nature07388 18931655

38. Tsurumi A, Xia F, Li J, Larson K, LaFrance R, et al. (2011) STAT Is an Essential Activator of the Zygotic Genome in the Early Drosophila Embryo. PLoS Genet 7: e1002086. doi: 10.1371/journal.pgen.1002086 21637778

39. Lu M, Tian H, Yue W, Li L, Li S, et al. (2013) Overexpression of TFIIB-related factor 2 is significantly correlated with tumor angiogenesis and poor survival in patients with esophageal squamous cell cancer. Med Oncol 30: 1–9. doi: 10.5339/qmj.2013.6 25003055

40. Wright VM, Vogt KL, Smythe E, Zeidler MP (2011) Differential activities of the Drosophila JAK/STAT pathway ligands Upd, Upd2 and Upd3. Cell Signal 23: 920–927. doi: 10.1016/j.cellsig.2011.01.020 21262354

41. Bina S, Zeidler M (2000) JAK/STAT Pathway Signalling in Drosophila Melanogaster.

42. Flaherty MS, Zavadil J, Ekas LA, Bach EA (2009) Genome-wide expression profiling in the Drosophila eye reveals unexpected repression of notch signaling by the JAK/STAT pathway. Dev Dyn 238: 2235–2253. doi: 10.1002/dvdy.21989 19504457

43. Karsten P, Häder S, Zeidler MP (2002) Cloning and expression of Drosophila SOCS36E and its potential regulation by the JAK/STAT pathway. Mech Dev 117: 343–346. 12204282

44. Xi R, McGregor JR, Harrison DA (2003) A gradient of JAK pathway activity patterns the anterior-posterior axis of the follicular epithelium. Dev Cell 4: 167–177. 12586061

45. Lopes ESS, Araujo HM (2004) The maternal JAK/STAT pathway of Drosophila regulates embryonic dorsal-ventral patterning. Braz J Med Biol Res Rev Bras Pesqui Médicas E Biológicas Soc Bras Biofísica Al 37: 1811–1818.

46. Devergne O, Ghiglione C, Noselli S (2007) The endocytic control of JAK/STAT signalling in Drosophila. J Cell Sci 120: 3457–3464. 17855388

47. Baeg G-H, Zhou R, Perrimon N (2005) Genome-wide RNAi analysis of JAK/STAT signaling components in Drosophila. Genes Dev 19: 1861–1870. 16055650

48. Flaherty MS, Salis P, Evans CJ, Ekas LA, Marouf A, et al. (2010) chinmo is a functional effector of the JAK/STAT pathway that regulates eye development, tumor formation, and stem cell self-renewal in Drosophila. Dev Cell 18: 556–568. doi: 10.1016/j.devcel.2010.02.006 20412771

49. Wang H, Chen X, He T, Zhou Y, Luo H (2013) Evidence for tissue-specific Jak/STAT target genes in Drosophila optic lobe development. Genetics 195: 1291–1306. doi: 10.1534/genetics.113.155945 24077308

50. Ekas LA, Baeg G-H, Flaherty MS, Ayala-Camargo A, Bach EA (2006) JAK/STAT signaling promotes regional specification by negatively regulating wingless expression in Drosophila. Development 133: 4721–4729. 17079268

51. Lin X, Perrimon N (1999) Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature 400: 281–284. 10421372

52. Shlyueva D, Stampfel G, Stark A (2014) Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet 15: 272–286. doi: 10.1038/nrg3682 24614317

53. Thomas-Chollier M, Herrmann C, Defrance M, Sand O, Thieffry D, et al. (2012) RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets. Nucleic Acids Res 40: e31. doi: 10.1093/nar/gkr1104 22156162

54. Aerts S (2012) Computational strategies for the genome-wide identification of cis-regulatory elements and transcriptional targets. Curr Top Dev Biol 98: 121–145. doi: 10.1016/B978-0-12-386499-4.00005-7 22305161

55. Uhlirova M, Jasper H, Bohmann D (2005) Non-cell-autonomous induction of tissue overgrowth by JNK/Ras cooperation in a Drosophila tumor model. Proc Natl Acad Sci U S A 102: 13123–13128. 16150723

56. Ekas LA, Cardozo TJ, Flaherty MS, McMillan EA, Gonsalves FC, et al. (2010) Characterization of a dominant-active STAT that promotes tumorigenesis in Drosophila. Dev Biol 344: 621–636. doi: 10.1016/j.ydbio.2010.05.497 20501334

57. Ostrin EJ, Li Y, Hoffman K, Liu J, Wang K, et al. (2006) Genome-wide identification of direct targets of the Drosophila retinal determination protein Eyeless. Genome Res 16: 466–476. 16533912

58. Wang VY, Hassan BA, Bellen HJ, Zoghbi HY (2002) Drosophila atonal Fully Rescues the Phenotype of Math1 Null Mice. Curr Biol 12: 1611–1616. 12372255

59. St. Pierre SE, Ponting L, Stefancsik R, McQuilton P, the FlyBase Consortium (2014) FlyBase 102—advanced approaches to interrogating FlyBase. Nucleic Acids Res 42: D780–D788. doi: 10.1093/nar/gkt1092 24234449

60. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359. doi: 10.1038/nmeth.1923 22388286

61. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079. doi: 10.1093/bioinformatics/btp352 19505943

62. Feng J, Liu T, Zhang Y (2011) Using MACS to Identify Peaks from ChIP-Seq Data. Curr Protoc Bioinforma Ed Board Andreas Baxevanis Al 34: 2.14.1–2.14.14.

63. Anders S, Pyl PT, Huber W (2014) HTSeq A Python framework to work with high-throughput sequencing data.

64. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841–842. doi: 10.1093/bioinformatics/btq033 20110278

65. Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D (2010) BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics 26: 2204–2207. doi: 10.1093/bioinformatics/btq351 20639541

66. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2.

67. Shin H, Liu T, Manrai AK, Liu XS (2009) CEAS: cis-regulatory element annotation system. Bioinformatics 25: 2605–2606. doi: 10.1093/bioinformatics/btp479 19689956

68. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550. 16199517

69. Turkel N, Sahota VK, Bolden JE, Goulding KR, Doggett K, et al. (2013) The BTB-zinc finger transcription factor abrupt acts as an epithelial oncogene in Drosophila melanogaster through maintaining a progenitor-like cell state. PLoS Genet 9: e1003627. doi: 10.1371/journal.pgen.1003627 23874226

70. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3. 16646824

71. Janky R, Verfaillie A, Imrichová H, Van de Sande B, Standaert L, et al. (2014) iRegulon: From a Gene List to a Gene Regulatory Network Using Large Motif and Track Collections. PLoS Comput Biol 10: e1003731. doi: 10.1371/journal.pcbi.1003731 25058159

72. Griffith OL, Montgomery SB, Bernier B, Chu B, Kasaian K, et al. (2008) ORegAnno: an open-access community-driven resource for regulatory annotation. Nucleic Acids Res 36: D107–D113. 18006570

73. Gallo SM, Gerrard DT, Miner D, Simich M, Des Soye B, et al. (2011) REDfly v3.0: toward a comprehensive database of transcriptional regulatory elements in Drosophila. Nucleic Acids Res 39: D118–D123. doi: 10.1093/nar/gkq999 20965965

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#