The Genetic Architecture of the Genome-Wide Transcriptional Response to ER Stress in the Mouse


Genetic variation among individuals can greatly impact the severity of disease outcomes. To understand the effects of different genetic backgrounds on disease presentation, we focused on ER stress, an important cellular stressor that impacts many human diseases. We examined how genetic variation affects ER stress response, at the RNA level, in eight laboratory mouse strains and their hybrid progeny. We find that each mouse strain responds in a unique way to ER stress, and we characterized the patterns of genetic variation that underlie the differences in ER stress response between the strains. We find that the strains show major differences in their inflammatory response to ER stress, a critical component to disease. The results of this study are important for understanding potential ways in which genetic variation in ER stress response could impact disease, and lays the groundwork for future studies in human patients.


Vyšlo v časopise: The Genetic Architecture of the Genome-Wide Transcriptional Response to ER Stress in the Mouse. PLoS Genet 11(2): e32767. doi:10.1371/journal.pgen.1004924
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pgen.1004924

Souhrn

Genetic variation among individuals can greatly impact the severity of disease outcomes. To understand the effects of different genetic backgrounds on disease presentation, we focused on ER stress, an important cellular stressor that impacts many human diseases. We examined how genetic variation affects ER stress response, at the RNA level, in eight laboratory mouse strains and their hybrid progeny. We find that each mouse strain responds in a unique way to ER stress, and we characterized the patterns of genetic variation that underlie the differences in ER stress response between the strains. We find that the strains show major differences in their inflammatory response to ER stress, a critical component to disease. The results of this study are important for understanding potential ways in which genetic variation in ER stress response could impact disease, and lays the groundwork for future studies in human patients.


Zdroje

1. Bernales S, Papa FR, Walter P (2006) Intracellular signaling by the unfolded protein response. Annu Rev Cell Dev Biol 22: 487–508. doi: 10.1146/annurev.cellbio.21.122303.120200 16822172

2. Wang S, Kaufman RJ (2012) The impact of the unfolded protein response on human disease. J Cell Biol 197: 857–867. doi: 10.1083/jcb.201110131 22733998

3. Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S, et al. (2002) Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest 109: 525–532. doi: 10.1172/JCI14550 11854325

4. Song B, Scheuner D, Ron D, Pennathur S, Kaufman RJ (2008) Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J Clin Invest 118: 3378–3389. doi: 10.1172/JCI34587 18776938

5. Wang L, Popko B, Roos RP (2014) An enhanced integrated stress response ameliorates mutant SOD1-induced ALS. Hum Mol Genet 23:2629–2638. doi: 10.1093/hmg/ddt658 24368417

6. Wang L, Popko B, Roos RP (2011) The unfolded protein response in familial amyotrophic lateral sclerosis. Hum Mol Genet 20: 1008–1015. doi: 10.1093/hmg/ddq546 21159797

7. Dombroski BA, Nayak RR, Ewens KG, Ankener W, Cheung VG, et al. (2010) Gene expression and genetic variation in response to endoplasmic reticulum stress in human cells. Am J Hum Genet 86: 719–729. doi: 10.1016/j.ajhg.2010.03.017 20398888

8. Nayak RR, Bernal WE, Lee JW, Kearns MJ, Cheung VG (2014) Stress-induced changes in gene interactions in human cells. Nucleic Acids Res 42: 1757–1771. doi: 10.1093/nar/gkt999 24170811

9. Chow CY, Wolfner MF, Clark AG (2013) Using natural variation in Drosophila to discover previously unknown endoplasmic reticulum stress genes. Proc Natl Acad Sci U S A 110: 9013–9018. doi: 10.1073/pnas.1307125110 23667151

10. Threadgill DW, Miller DR, Churchill GA, de Villena FP (2011) The collaborative cross: a recombinant inbred mouse population for the systems genetic era. ILAR J 52: 24–31. doi: 10.1093/ilar.52.1.24 21411855

11. Yalcin B, Wong K, Agam A, Goodson M, Keane TM, et al. (2011) Sequence-based characterization of structural variation in the mouse genome. Nature 477: 326–329. doi: 10.1038/nature10432 21921916

12. Keane TM, Goodstadt L, Danecek P, White MA, Wong K, et al. (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477: 289–294. doi: 10.1038/nature10413 21921910

13. Ideraabdullah FY, de la Casa-Esperon E, Bell TA, Detwiler DA, Magnuson T, et al. (2004) Genetic and haplotype diversity among wild-derived mouse inbred strains. Genome Res 14: 1880–1887. doi: 10.1101/gr.2519704 15466288

14. Aylor DL, Valdar W, Foulds-Mathes W, Buus RJ, Verdugo RA, et al. (2011) Genetic analysis of complex traits in the emerging Collaborative Cross. Genome Res 21: 1213–1222. doi: 10.1101/gr.111310.110 21406540

15. Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R, et al. (2012) High-resolution genetic mapping using the Mouse Diversity outbred population. Genetics 190: 437–447. doi: 10.1534/genetics.111.132597 22345611

16. Samali A, Fitzgerald U, Deegan S, Gupta S (2010) Methods for monitoring endoplasmic reticulum stress and the unfolded protein response. Int J Cell Biol 2010: 830307. doi: 10.1155/2010/830307 20169136

17. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, et al. (2000) ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20: 6755–6767. doi: 10.1128/MCB.20.18.6755-6767.2000 10958673

18. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, et al. (2001) Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6alpha and 6beta that activates the mammalian unfolded protein response. Mol Cell Biol 21: 1239–1248. doi: 10.1128/MCB.21.4.1239-1248.2001 11158310

19. Arensdorf AM, Diedrichs D, Rutkowski DT (2013) Regulation of the transcriptome by ER stress: non-canonical mechanisms and physiological consequences. Front Genet 4: 256. doi: 10.3389/fgene.2013.00256 24348511

20. Cech TR, Steitz JA (2014) The Noncoding RNA Revolution-Trashing Old Rules to Forge New Ones. Cell 157: 77–94. doi: 10.1016/j.cell.2014.03.008 24679528

21. Brookheart RT, Michel CI, Listenberger LL, Ory DS, Schaffer JE (2009) The non-coding RNA gadd7 is a regulator of lipid-induced oxidative and endoplasmic reticulum stress. J Biol Chem 284: 7446–7454. doi: 10.1074/jbc.M806209200 19150982

22. Chitnis N, Pytel D, Diehl JA (2013) UPR-inducible miRNAs contribute to stressful situations. Trends Biochem Sci 38: 447–452. doi: 10.1016/j.tibs.2013.06.012 23906563

23. Byrd AE, Brewer JW (2013) Micro(RNA)managing endoplasmic reticulum stress. IUBMB Life 65: 373–381. doi: 10.1002/iub.1151 23554021

24. Maurel M, Chevet E (2013) Endoplasmic reticulum stress signaling: the microRNA connection. Am J Physiol Cell Physiol 304: C1117–1126. doi: 10.1152/ajpcell.00061.2013 23515532

25. Smale ST (2012) Dimer-specific regulatory mechanisms within the NF-kappaB family of transcription factors. Immunol Rev 246: 193–204. doi: 10.1111/j.1600-065X.2011.01091.x 22435556

26. Tam AB, Mercado EL, Hoffmann A, Niwa M (2012) ER stress activates NF-kappaB by integrating functions of basal IKK activity, IRE1 and PERK. PLoS One 7: e45078. doi: 10.1371/journal.pone.0045078 23110043

27. Nakajima S, Hiramatsu N, Hayakawa K, Saito Y, Kato H, et al. (2011) Selective abrogation of BiP/GRP78 blunts activation of NF-kappaB through the ATF6 branch of the UPR: involvement of C/EBPbeta and mTOR-dependent dephosphorylation of Akt. Mol Cell Biol 31: 1710–1718. doi: 10.1128/MCB.00939-10 21300786

28. Wittkopp PJ, Haerum BK, Clark AG (2008) Regulatory changes underlying expression differences within and between Drosophila species. Nat Genet 40: 346–350. doi: 10.1038/ng.77 18278046

29. McManus CJ, Coolon JD, Duff MO, Eipper-Mains J, Graveley BR, et al. (2010) Regulatory divergence in Drosophila revealed by mRNA-seq. Genome Res 20: 816–825. doi: 10.1101/gr.102491.109 20354124

30. Goncalves A, Leigh-Brown S, Thybert D, Stefflova K, Turro E, et al. (2012) Extensive compensatory cis-trans regulation in the evolution of mouse gene expression. Genome Res 22: 2376–2384. doi: 10.1101/gr.142281.112 22919075

31. Lagarrigue S, Martin L, Hormozdiari F, Roux PF, Pan C, et al. (2013) Analysis of allele-specific expression in mouse liver by RNA-Seq: a comparison with Cis-eQTL identified using genetic linkage. Genetics 195: 1157–1166. doi: 10.1534/genetics.113.153882 24026101

32. Yamamoto K, Yoshida H, Kokame K, Kaufman RJ, Mori K (2004) Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE, UPRE and ERSE-II. J Biochem 136: 343–350. doi: 10.1093/jb/mvh122 15598891

33. Kokame K, Kato H, Miyata T (2001) Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response. J Biol Chem 276: 9199–9205. doi: 10.1074/jbc.M010486200 11112790

34. Yoshida H, Haze K, Yanagi H, Yura T, Mori K (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 273: 33741–33749. doi: 10.1074/jbc.273.50.33741 9837962

35. Roy B, Lee AS (1999) The mammalian endoplasmic reticulum stress response element consists of an evolutionarily conserved tripartite structure and interacts with a novel stress-inducible complex. Nucleic Acids Res 27: 1437–1443. doi: 10.1093/nar/27.6.1437 10037803

36. Jiang HY, Jiang L, Wek RC (2007) The eukaryotic initiation factor-2 kinase pathway facilitates differential GADD45a expression in response to environmental stress. J Biol Chem 282: 3755–3765. doi: 10.1074/jbc.M606461200 17170114

37. Baldwin KL, Dinh EM, Hart BM, Masson PH (2013) CACTIN is an essential nuclear protein in Arabidopsis and may be associated with the eukaryotic spliceosome. FEBS Lett 587: 873–879. doi: 10.1016/j.febslet.2013.02.041 23454656

38. O'Leary EE, Mazurkiewicz-Munoz AM, Argetsinger LS, Maures TJ, Huynh HT, et al. (2013) Identification of steroid-sensitive gene-1/Ccdc80 as a JAK2-binding protein. Mol Endocrinol 27: 619–634. doi: 10.1210/me.2011-1275 23449887

39. Lee JH, Bodmer R, Bier E, Karin M (2010) Sestrins at the crossroad between stress and aging. Aging (Albany NY) 2: 369–374.

40. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, et al. (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell 7: 1153–1163. doi: 10.1016/S1097-2765(01)00264-7 11430819

41. Dimas AS, Deutsch S, Stranger BE, Montgomery SB, Borel C, et al. (2009) Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325: 1246–1250. doi: 10.1126/science.1174148 19644074

42. Nica AC, Parts L, Glass D, Nisbet J, Barrett A, et al. (2011) The architecture of gene regulatory variation across multiple human tissues: the MuTHER study. PLoS Genet 7: e1002003. doi: 10.1371/journal.pgen.1002003 21304890

43. Fairfax BP, Humburg P, Makino S, Naranbhai V, Wong D, et al. (2014) Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343: 1246949. doi: 10.1126/science.1246949 24604202

44. Churchill GA, Gatti DM, Munger SC, Svenson KL (2012) The Diversity Outbred mouse population. Mamm Genome 23: 713–718. doi: 10.1007/s00335-012-9414-2 22892839

45. Chesler EJ, Miller DR, Branstetter LR, Galloway LD, Jackson BL, et al. (2008) The Collaborative Cross at Oak Ridge National Laboratory: developing a powerful resource for systems genetics. Mamm Genome 19: 382–389. doi: 10.1007/s00335-008-9135-8 18716833

46. Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, et al. (2004) The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet 36: 1133–1137. doi: 10.1038/ng1104-1133 15514660

47. Munger SC, Raghupathy N, Choi K, Simons AK, Gatti DM, et al. (2014) RNA-Seq alignment to individualized genomes improves transcript abundance estimates in multiparent populations. Genetics 198: 59–73. doi: 10.1534/genetics.114.165886 25236449

48. Rutkowski DT, Arnold SM, Miller CN, Wu J, Li J, et al. (2006) Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol 4: e374. doi: 10.1371/journal.pbio.0040374 17090218

49. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, et al. (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287: 664–666. doi: 10.1126/science.287.5453.664 10650002

50. Francisco AB, Singh R, Li S, Vani AK, Yang L, et al. (2010) Deficiency of suppressor enhancer Lin12 1 like (SEL1L) in mice leads to systemic endoplasmic reticulum stress and embryonic lethality. J Biol Chem 285: 13694–13703. doi: 10.1074/jbc.M109.085340 20197277

51. Conn PM (2011) The unfolded protein response and cellular stress, Part A. Preface. Methods Enzymol 489: xvii. doi: 10.1016/B978-0-12-385116-1.00020-0 21266220

52. van Huizen R, Martindale JL, Gorospe M, Holbrook NJ (2003) P58IPK, a novel endoplasmic reticulum stress-inducible protein and potential negative regulator of eIF2alpha signaling. J Biol Chem 278: 15558–15564. doi: 10.1074/jbc.M212074200 12601012

53. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: 1105–1111. doi: 10.1093/bioinformatics/btp120 19289445

54. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28: 511–515. doi: 10.1038/nbt.1621 20436464

55. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140. doi: 10.1093/bioinformatics/btp616 19910308

56. Robinson MD, Smyth GK (2007) Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 23: 2881–2887. doi: 10.1093/bioinformatics/btm453 17881408

57. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40: 4288–4297. doi: 10.1093/nar/gks042 22287627

58. Chow CY, Wolfner MF, Clark AG (2010) The genetic basis for male x female interactions underlying variation in reproductive phenotypes of Drosophila. Genetics 186: 1355–1365. doi: 10.1534/genetics.110.123174 20876561

59. Clark AG, Begun DJ, Prout T (1999) Female x male interactions in Drosophila sperm competition. Science 283: 217–220. doi: 10.1126/science.283.5399.217 9880253

60. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi: 10.1093/bioinformatics/btu170 24695404

61. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20: 1297–1303. doi: 10.1101/gr.107524.110 20644199

62. Wang X, Clark AG (2014) Using next-generation RNA sequencing to identify imprinted genes. Heredity (Edinb) 113:156–166. doi: 10.1038/hdy.2014.18

63. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, et al. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6: 80–92. doi: 10.4161/fly.19695

64. Wang X, Sun Q, McGrath SD, Mardis ER, Soloway PD, et al. (2008) Transcriptome-wide identification of novel imprinted genes in neonatal mouse brain. PLoS One 3: e3839. doi: 10.1371/journal.pone.0003839 19052635

65. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57. doi: 10.1038/nprot.2008.211 19131956

66. Huang da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37: 1–13. doi: 10.1093/nar/gkn923 19033363

67. Ho Sui SJ, Mortimer JR, Arenillas DJ, Brumm J, Walsh CJ, et al. (2005) oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes. Nucleic Acids Res 33: 3154–3164. doi: 10.1093/nar/gki624 15933209

68. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27: 431–432. doi: 10.1093/bioinformatics/btq675 21149340

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Hereditární TTR amyloidóza – vzácné, nebo jen neodhalené onemocnění? 2. díl
nový kurz

Eozinofilní granulomatóza s polyangiitidou

Betablokátory a Ca antagonisté z jiného úhlu
Autori: prof. MUDr. Michal Vrablík, Ph.D., MUDr. Petr Janský

Autori: doc. MUDr. Petr Čáp, Ph.D.

Farmakoterapie akutní a chronické bolesti

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Nemáte účet?  Registrujte sa

Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa