#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Evolutionary Signatures amongst Disease Genes Permit Novel Methods for Gene Prioritization and Construction of Informative Gene-Based Networks


Molecular evolution has informed our understanding of gene function; however, classical methods have largely been static in their implementation, focusing on single genes. Here, we present and prove the utility of a dynamic, network-based understanding of molecular evolution to infer relationships between genes associated with human diseases. We have shown previously that groups of genes within functional niches tend to share similar evolutionary histories. Exploiting the availability of whole genomes from multiple species, these histories can be numerically scored and dynamically compared to one another using a sequence-based signature termed Evolutionary Rate Covariation (ERC). To explore potential applications, we characterized ERC amongst disease genes and found that many diseases contain significant ERC signatures between their contributing genes. We show that ERC can also prioritize “true” disease genes amongst unrelated gene candidates. Lastly, these signatures can serve as a foundation for creating instructive gene-based networks, unveiling novel relationships between diseases thought to be clinically distinct. Our hope is that this study will add to the increasing evidence that advancing our understanding of molecular evolution can be a crucial asset in large-scale gene discovery pursuits (Link to our webserver that provides intuitive ERC analysis tools: http://csb.pitt.edu/erc_analysis/).


Vyšlo v časopise: Evolutionary Signatures amongst Disease Genes Permit Novel Methods for Gene Prioritization and Construction of Informative Gene-Based Networks. PLoS Genet 11(2): e32767. doi:10.1371/journal.pgen.1004967
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004967

Souhrn

Molecular evolution has informed our understanding of gene function; however, classical methods have largely been static in their implementation, focusing on single genes. Here, we present and prove the utility of a dynamic, network-based understanding of molecular evolution to infer relationships between genes associated with human diseases. We have shown previously that groups of genes within functional niches tend to share similar evolutionary histories. Exploiting the availability of whole genomes from multiple species, these histories can be numerically scored and dynamically compared to one another using a sequence-based signature termed Evolutionary Rate Covariation (ERC). To explore potential applications, we characterized ERC amongst disease genes and found that many diseases contain significant ERC signatures between their contributing genes. We show that ERC can also prioritize “true” disease genes amongst unrelated gene candidates. Lastly, these signatures can serve as a foundation for creating instructive gene-based networks, unveiling novel relationships between diseases thought to be clinically distinct. Our hope is that this study will add to the increasing evidence that advancing our understanding of molecular evolution can be a crucial asset in large-scale gene discovery pursuits (Link to our webserver that provides intuitive ERC analysis tools: http://csb.pitt.edu/erc_analysis/).


Zdroje

1. Manolio TA (2013) Bringing genome-wide association findings into clinical use. Nat Rev Genet 14: 549–558. doi: 10.1038/nrg3523 23835440

2. Steensma DP (2013) The beginning of the end of the beginning in cancer genomics. N Engl J Med 368: 2138–2140. doi: 10.1056/NEJMe1303816 23634995

3. Barabási A-L, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12: 56–68. doi: 10.1038/nrg2918 21164525

4. Blair DR, Lyttle CS, Mortensen JM, Bearden CF, Jensen AB, et al. (2013) A nondegenerate code of deleterious variants in Mendelian loci contributes to complex disease risk. Cell 155: 70–80. doi: 10.1016/j.cell.2013.08.030 24074861

5. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, et al. (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38: W214–W220. doi: 10.1093/nar/gkq537 20576703

6. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, et al. (2012) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41: D808–D815. doi: 10.1093/nar/gks1094 23203871

7. Wu C, Macleod I, Su AI (2013) BioGPS and MyGene.info: organizing online, gene-centric information. Nucleic Acids Res 41: D561–D565. doi: 10.1093/nar/gks1114 23175613

8. Kalathur RKR, Pinto JP, Hernández-Prieto MA, Machado RSR, Almeida D, et al. (2014) UniHI 7: an enhanced database for retrieval and interactive analysis of human molecular interaction networks. Nucleic Acids Res 42: D408–D414. doi: 10.1093/nar/gkt1100 24214987

9. Navarro MN, Goebel J, Feijoo-Carnero C, Morrice N, Cantrell DA (2011) Phosphoproteomic analysis reveals an intrinsic pathway for the regulation of histone deacetylase 7 that controls the function of cytotoxic T lymphocytes. Nat Immunol 12: 352–361. doi: 10.1038/ni.2008 21399638

10. O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, et al. (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485: 246–250. doi: 10.1038/nature10989 22495309

11. Mostafavi S, Morris Q (2012) Combining many interaction networks to predict gene function and analyze gene lists. Proteomics 12: 1687–1696. doi: 10.1002/pmic.201100607 22589215

12. Moreau Y, Tranchevent L-C (2012) Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat Rev Genet 13: 523–536. doi: 10.1038/nrg3253 22751426

13. Pippucci T, Parmeggiani A, Palombo F, Maresca A, Angius A, et al. (2013) A Novel Null Homozygous Mutation ConfirmsCACNA2D2 as a Gene Mutated in Epileptic Encephalopathy. PLoS ONE 8: e82154. doi: 10.1371/journal.pone.0082154 24358150

14. Jiao S, Chu Q, Wang Y, Xie Z, Hou S, et al. (2013) Identification of the causative gene for Simmental arachnomelia syndrome using a network-based disease gene prioritization approach. PLoS ONE 8: e64468. doi: 10.1371/journal.pone.0064468 23696895

15. Sparrow DB, Guillén-Navarro E, Fatkin D, Dunwoodie SL (2008) Mutation of Hairy-and-Enhancer-of-Split-7 in humans causes spondylocostal dysostosis. Human Molecular Genetics 17: 3761–3766. doi: 10.1093/hmg/ddn272 18775957

16. Rajab A, Straub V, McCann LJ, Seelow D, Varon R, et al. (2010) Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4) due to PTRF-CAVIN mutations. PLoS Genet 6: e1000874. doi: 10.1371/journal.pgen.1000874 20300641

17. Erlich Y, Edvardson S, Hodges E, Zenvirt S, Thekkat P, et al. (2011) Exome sequencing and disease-network analysis of a single family implicate a mutation in KIF1A in hereditary spastic paraparesis. Genome Res 21: 658–664. doi: 10.1101/gr.117143.110 21487076

18. Amberger J, Bocchini CA, Scott AF, Hamosh A (2009) McKusick's Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Res 37: D793–D796. doi: 10.1093/nar/gkn665 18842627

19. Barabási A-L (2007) Network medicine—from obesity to the "diseasome". N Engl J Med 357: 404–407. 17652657

20. Lee D-S, Park J, Kay KA, Christakis NA, Oltvai ZN, et al. (2008) The implications of human metabolic network topology for disease comorbidity. Proc Natl Acad Sci USA 105: 9880–9885. doi: 10.1073/pnas.0802208105 18599447

21. Hidalgo CA, Blumm N, Barabási A-L, Christakis NA (2009) A Dynamic Network Approach for the Study of Human Phenotypes. PLoS Comput Biol 5: e1000353. doi: 10.1371/journal.pcbi.1000353 19360091

22. Li Y, Agarwal P (2009) A pathway-based view of human diseases and disease relationships. PLoS ONE 4: e4346. doi: 10.1371/journal.pone.0004346 19194489

23. Dudley JT, Deshpande T, Butte AJ (2011) Exploiting drug-disease relationships for computational drug repositioning. Briefings in Bioinformatics 12: 303–311. doi: 10.1093/bib/bbr013 21690101

24. Hurle MR, Yang L, Xie Q, Rajpal DK, Sanseau P, et al. (2013) Computational drug repositioning: from data to therapeutics. Clin Pharmacol Ther 93: 335–341. doi: 10.1038/clpt.2013.1 23443757

25. Lovell SC, Robertson DL (2010) An integrated view of molecular coevolution in protein-protein interactions. Mol Biol Evol 27: 2567–2575. doi: 10.1093/molbev/msq144 20551042

26. Clark NL, Alani E, Aquadro CF (2012) Evolutionary rate covariation reveals shared functionality and coexpression of genes. Genome Res 22: 714–720. doi: 10.1101/gr.132647.111 22287101

27. Juan D, Pazos F, Valencia A (2008) High-confidence prediction of global interactomes based on genome-wide coevolutionary networks. Proc Natl Acad Sci USA 105: 934–939. doi: 10.1073/pnas.0709671105 18199838

28. Clark NL, Alani E, Aquadro CF (2013) Evolutionary rate covariation in meiotic proteins results from fluctuating evolutionary pressure in yeasts and mammals. Genetics 193: 529–538. doi: 10.1534/genetics.112.145979 23183665

29. Clark NL, Aquadro CF (2010) A novel method to detect proteins evolving at correlated rates: identifying new functional relationships between coevolving proteins. Mol Biol Evol 27: 1152–1161. doi: 10.1093/molbev/msp324 20044587

30. Clark NL, Gasper J, Sekino M, Springer SA, Aquadro CF, et al. (2009) Coevolution of interacting fertilization proteins. PLoS Genet 5: e1000570. doi: 10.1371/journal.pgen.1000570 19629160

31. Findlay GD, Sitnik JL, Wang W, Aquadro CF, Clark NL, et al. (2014) Evolutionary rate covariation identifies new members of a protein network required for Drosophila melanogaster female post-mating responses. PLoS Genet 10: e1004108. doi: 10.1371/journal.pgen.1004108 24453993

32. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100: 9440–9445. 12883005

33. Macgregor S, Montgomery GW, Liu JZ, Zhao ZZ, Henders AK, et al. (2011) Genome-wide association study identifies a new melanoma susceptibility locus at 1q21.3. Nat Genet 43: 1114–1118. doi: 10.1038/ng.958 21983785

34. Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW (1993) MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci USA 90: 3516–3520. 7682708

35. Bornigen D, Tranchevent LC, Bonachela-Capdevila F, Devriendt K, De Moor B, et al. (2012) An unbiased evaluation of gene prioritization tools. Bioinformatics 28: 3081–3088. doi: 10.1093/bioinformatics/bts581 23047555

36. Bredrup C, Saunier S, Oud MM, Fiskerstrand T, Hoischen A, et al. (2011) Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. Am J Hum Genet 89: 634–643. doi: 10.1016/j.ajhg.2011.10.001 22019273

37. Huber C, Cormier-Daire V (2012) Ciliary disorder of the skeleton. Am J Med Genet 160C: 165–174. doi: 10.1002/ajmg.c.31336 22791528

38. Hu J, Barr MM (2005) ATP-2 interacts with the PLAT domain of LOV-1 and is involved in Caenorhabditis elegans polycystin signaling. Mol Biol Cell 16: 458–469. 15563610

39. O'Toole JF, Liu Y, Davis EE, Westlake CJ, Attanasio M, et al. (2010) Individuals with mutations in XPNPEP3, which encodes a mitochondrial protein, develop a nephronophthisis-like nephropathy. J Clin Invest 120: 791–802. doi: 10.1172/JCI40076 20179356

40. Kingma PS, Zhang L, Ikegami M, Hartshorn K, McCormack FX, et al. (2006) Correction of Pulmonary Abnormalities in Sftpd-/- Mice Requires the Collagenous Domain of Surfactant Protein D. Journal of Biological Chemistry 281: 24496–24505. 16787926

41. Orgeig S, Hiemstra PS, Veldhuizen EJA, Casals C, Clark HW, et al. (2010) Recent advances in alveolar biology: evolution and function of alveolar proteins. Respir Physiol Neurobiol 173 Suppl: S43–S54. doi: 10.1016/j.resp.2010.04.023 20433956

42. Soufir N, Meziani R, Lacapère J-J, Bertrand G, Fumeron F, et al. (2005) Association between endothelin receptor B nonsynonymous variants and melanoma risk. J Natl Cancer Inst 97: 1297–1301. 16145050

43. Cruz-Muñoz W, Jaramillo ML, Man S, Xu P, Banville M, et al. (2012) Roles for endothelin receptor B and BCL2A1 in spontaneous CNS metastasis of melanoma. Cancer Research 72: 4909–4919. doi: 10.1158/0008-5472.CAN-12-2194 22865454

44. Kumasaka MY, Yajima I, Hossain K, Iida M, Tsuzuki T, et al. (2010) A Novel Mouse Model for De novo Melanoma. Cancer Research 70: 24–29. doi: 10.1158/0008-5472.CAN-09-2838 20048069

45. Spinella F, Rosanò L, Di Castro V, Decandia S, Nicotra MR, et al. (2007) Endothelin-1 and endothelin-3 promote invasive behavior via hypoxia-inducible factor-1alpha in human melanoma cells. Cancer Research 67: 1725–1734. 17308114

46. Selfridge J, Song L, Brownstein DG, Melton DW (2010) Mice with DNA repair gene Ercc1 deficiency in a neural crest lineage are a model for late-onset Hirschsprung disease. DNA Repair (Amst) 9: 653–660. doi: 10.1016/j.dnarep.2010.02.018 20362516

47. Li W, Melton DW (2012) Cisplatin regulates the MAPK kinase pathway to induce increased expression of DNA repair gene ERCC1 and increase melanoma chemoresistance. Oncogene 31: 2412–2422. doi: 10.1038/onc.2011.426 21996734

48. MD DAER, MD PJEA PhD MT, MD PBDG (2013) Noonan syndrome. The Lancet 381: 333–342. doi: 10.1016/S0140-6736(12)61023-X 23312968

49. Vlachos A, Ball S, Dahl N, Alter BP, Sheth S, et al. (2008) Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. British Journal of Haematology 142: 859–876. doi: 10.1111/j.1365-2141.2008.07269.x 18671700

50. Barilla-LaBarca M-L, Toder K, Furie R (2013) Targeting the complement system in systemic lupus erythematosus and other diseases. Clinical Immunology 148: 313–321. doi: 10.1016/j.clim.2013.02.014 23623037

51. Crispín JC, Hedrich CM, Tsokos GC (2013) Gene-function studies in systemic lupus erythematosus. Nature Publishing Group 9: 476–484.

52. Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, et al. (2007) The human disease network. Proc Natl Acad Sci USA 104: 8685–8690. 17502601

53. Bröer S, Bailey CG, Kowalczuk S, Ng C, Vanslambrouck JM, et al. (2008) Iminoglycinuria and hyperglycinuria are discrete human phenotypes resulting from complex mutations in proline and glycine transporters. J Clin Invest 118: 3881–3892. doi: 10.1172/JCI36625 19033659

54. Suthram S, Dudley JT, Chiang AP, Chen R, Hastie TJ, et al. (2010) Network-Based Elucidation of Human Disease Similarities Reveals Common Functional Modules Enriched for Pluripotent Drug Targets. PLoS Comput Biol 6: e1000662. doi: 10.1371/journal.pcbi.1000662 20140234

55. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, et al. (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39: D561–D568. doi: 10.1093/nar/gkq973 21045058

56. Kouskoumvekaki I, Shublaq N, Brunak S (2013) Facilitating the use of large-scale biological data and tools in the era of translational bioinformatics. Briefings in Bioinformatics.

57. Daub JT, Hofer T, Cutivet E, Dupanloup I, Quintana-Murci L, et al. (2013) Evidence for polygenic adaptation to pathogens in the human genome. Mol Biol Evol 30: 1544–1558. doi: 10.1093/molbev/mst080 23625889

58. Yang Z (2007) PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol Biol Evol 24: 1586–1591. 17483113

59. Sato T, Yamanishi Y, Kanehisa M, Toh H (2005) The inference of protein-protein interactions by co-evolutionary analysis is improved by excluding the information about the phylogenetic relationships. Bioinformatics 21: 3482–3489. 15994190

60. Strimmer K (2008) fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 24: 1461–1462. doi: 10.1093/bioinformatics/btn209 18441000

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#