-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
microRNAs Regulate Cell-to-Cell Variability of Endogenous Target Gene Expression in Developing Mouse Thymocytes
microRNAs are integral to many developmental processes and may 'canalise' development by reducing cell-to-cell variation in gene expression. This idea is supported by computational studies that have modeled the impact of microRNAs on the expression of their targets and the construction of artificial incoherent feedforward loops using synthetic biology tools. Here we show that this interesting principle of microRNA regulation actually occurs in a mammalian developmental system. We examine cell-to-cell variation of protein expression in developing mouse thymocytes by quantitative flow cytometry and find that the absence of microRNAs results in increased cell-to-cell variation in the expression of the microRNA target Cd69. Mechanistically, T cell receptor signaling induces both Cd69 and miR-17 and miR-20a, two microRNAs that target Cd69. Co-regulation of microRNAs and their target mRNA dampens the expression of Cd69 and forms an incoherent feedforward loop that reduces cell-to-cell variation on CD69 expression. In addition, miR-181, which also targets Cd69 and is a known modulator of T cell receptor signaling, also affects cell-to-cell variation of CD69 expression. The ability of microRNAs to control the uniformity of gene expression across mammalian cell populations may be important for normal development and for disease.
Vyšlo v časopise: microRNAs Regulate Cell-to-Cell Variability of Endogenous Target Gene Expression in Developing Mouse Thymocytes. PLoS Genet 11(2): e32767. doi:10.1371/journal.pgen.1005020
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005020Souhrn
microRNAs are integral to many developmental processes and may 'canalise' development by reducing cell-to-cell variation in gene expression. This idea is supported by computational studies that have modeled the impact of microRNAs on the expression of their targets and the construction of artificial incoherent feedforward loops using synthetic biology tools. Here we show that this interesting principle of microRNA regulation actually occurs in a mammalian developmental system. We examine cell-to-cell variation of protein expression in developing mouse thymocytes by quantitative flow cytometry and find that the absence of microRNAs results in increased cell-to-cell variation in the expression of the microRNA target Cd69. Mechanistically, T cell receptor signaling induces both Cd69 and miR-17 and miR-20a, two microRNAs that target Cd69. Co-regulation of microRNAs and their target mRNA dampens the expression of Cd69 and forms an incoherent feedforward loop that reduces cell-to-cell variation on CD69 expression. In addition, miR-181, which also targets Cd69 and is a known modulator of T cell receptor signaling, also affects cell-to-cell variation of CD69 expression. The ability of microRNAs to control the uniformity of gene expression across mammalian cell populations may be important for normal development and for disease.
Zdroje
1. Waddington C. H. (1959). Canalization of development and genetic assimilation of acquired characters. Nature 183 : 1634–1638 13666845
2. Hornstein E., Shomron N. (2006). Canalization of development by microRNAs. Nat. Genet. 38: S20–S24. 16736020
3. Tsang J, Zhu J, van Oudenaarden A. 2007. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 26 : 753–767. 17560377
4. Herranz H., Cohen S. M. (2010). MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev. 24 : 1339–1344. doi: 10.1101/gad.1937010 20595229
5. Ebert M. S., Sharp P. A. (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149 : 515–524. doi: 10.1016/j.cell.2012.04.005 22541426
6. Mangan S, Alon U. (2003) Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci USA. 100 : 11980–11985 14530388
7. Bleris L., Xie Z, Glass D, Adadey A, Sontag E, et al. (2011) Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template. Mol. Syst. Biol. 7 : 519. doi: 10.1038/msb.2011.49 21811230
8. Osella M, Bosia C, Corá D, Caselle M. (2011) The Role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput Biol. 7: e1001101. doi: 10.1371/journal.pcbi.1001101 21423718
9. Swain PS, Elowitz MB, Siggia ED (2002). Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci U S A. 99 : 12795–12800. 12237400
10. Siciliano V, Garzilli I, Fracassi C, Criscuolo S, Ventre S, et al. (2013) miRNAs confer phenotypic robustness to gene networks by suppressing biological noise. Nat Commun. 4 : 2364. doi: 10.1038/ncomms3364 24077216
11. Li X., Cassidy J. J., Reinke C. A., Fischboeck S. Carthew R. W. (2009) A microRNA imparts robustness against environmental fluctuation during development. Cell 137 : 273–282. doi: 10.1016/j.cell.2009.01.058 19379693
12. Yohn C. B., Pusateri L., Barbosa V., and Lehmann R. (2003) Malignant brain tumor and three novel genes are required for Drosophila germ-cell formation. Genetics 165 : 1889–1900. 14704174
13. Kugler JM, Chen YW, Weng R, Cohen SM. (2013) Maternal loss of miRNAs leads to increased variance in primordial germ cell numbers in Drosophila melanogaster. G3 (Bethesda). 3 : 1573–1576. doi: 10.1534/g3.113.007591 23893743
14. Li Y, Wang F, Lee JA, Gao FB. (2006) MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes Dev. 20 : 2793–805. 17015424
15. Arif S., Murat S., Almudi I., Nunes M. D., Bortolamiol-Becet D., et al. (2013) Evolution of mir-92a underlies natural morphological variation in Drosophila melanogaster. Curr Biol. 23 : 523–528. doi: 10.1016/j.cub.2013.02.018 23453955
16. Cohen SM, Brennecke J, Stark A. (2006) Denoising feedback loops by thresholding—a new role for microRNAs. Genes Dev. 20 : 2769–2772. 17043305
17. Dill H., Linder B., Fehr A., and Fischer U. (2012). Intronic miR-26b controls neuronal differentiation by repressing its host transcript, ctdsp2. Genes Dev. 26 : 25–30. doi: 10.1101/gad.177774.111 22215807
18. Dh Kim, Grün D, van Oudenaarden A. (2013). Dampening of expression oscillations by synchronous regulation of a microRNA and its target. Nat Genet. 45 : 1337–1344 doi: 10.1038/ng.2763 24036951
19. Nakamoto M, Jin P, O'Donnell WT, Warren ST (2005) Physiological identification of human transcripts translationally regulated by a specific microRNA. Hum Mol Genet 14 : 3813–3821. 16239240
20. Klein M.E., Lioy D.T., Ma L., Impey S., Mandel G, et al. (2007). Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat. Neurosci. 10 : 1513–1514 17994015
21. Ghosh T, Aprea J, Nardelli J, Engel H, Selinger C, et al. (2014). MicroRNAs establish robustness and adaptability of a critical gene network to regulate progenitor fate decisions during cortical neurogenesis. Cell Reports 7 : 1779–1788. doi: 10.1016/j.celrep.2014.05.029 24931612
22. Bian S, Hong J, Li Q, Schebelle L., Pollock A, et al. (2013). MicroRNA cluster miR-17-92 regulates neural stem cell expansion and transition to intermediate progenitors in the developing mouse neocortex. Cell Reports, 3, 1398–1406. doi: 10.1016/j.celrep.2013.03.037 23623502
23. Kumar RM, Cahan P, Shalek AK, Satija R, DaleyKeyser AJ, et al. (2014). Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature 516 : 56–61. doi: 10.1038/nature13920 25471879
24. Kisielow P, von Boehmer H. (1995). Development and selection of T cells: facts and puzzles. Adv Immunol. 58 : 87–209. 7741032
25. Feinerman O, Veiga J, Dorfman JR, Germain RN, Altan-Bonnet G. (2008) Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science 321 : 1081–1084. doi: 10.1126/science.1158013 18719282
26. Cobb BS, Nesterova TB, Thompson E, Hertweck A, O'Connor E, et al. (2005). T cell lineage choice and differentiation in the absence of the RNAse III enzyme dicer. J. Exp. Med. 201 : 1367–1373 15867090
27. Sood P, Krek A, Zavolan M, Macino G, Rajewsky N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A. 2006. 103 : 2746–2751. 16477010
28. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, et al. (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 17 : 211–215. doi: 10.1038/nm.2284 21240262
29. Sancho D, Gomez M, Sanchez-Madrid F (2005) CD69 is an immunoregulatory molecule induced following activation. Trends in Immunology 26 : 136–140 15745855
30. Shiow LR, Rosen DB, Brdickova N, Xu Y, An J, et al. (2006) CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440 : 540–544 16525420
31. Neilson JR, Zheng GX, Burge CB, Sharp PA. (2007) Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev. 21 : 578–589. 17344418
32. Zhang N, Bevan MJ. (2010) Dicer controls CD8+ T-cell activation, migration, and survival. Proc Natl Acad Sci U S A. 107 : 21629–21634. doi: 10.1073/pnas.1016299107 21098294
33. de Kouchkovsky D, Esensten JH, Rosenthal WL, Morar MM, Bluestone JA, et al. (2013) microRNA-17-92 regulates IL-10 production by regulatory T cells and control of experimental autoimmune encephalomyelitis. J Immunol. 191 : 1594–605. doi: 10.4049/jimmunol.1203567 23858035
34. Tanzer A, Stadler PF. (2004) Molecular evolution of a microRNA cluster. J Mol Biol. 339 : 327–335. 15136036
35. Cobb BS, Hertweck A, Smith J, O'Connor E, Graf D, et al. (2006). A role for Dicer in immune regulation. J. Exp. Med. 203 : 2519–2527. 17060477
36. Fragoso R, Mao T, Wang S, Schaffert S, Gong X, et al. (2012). Modulating the strength and threshold of NOTCH oncogenic signals by mir-181a-1/b-1. PLoS Genet. 8: e1002855. doi: 10.1371/journal.pgen.1002855 22916024
37. Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, et al. (2007) miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129 : 147–161 17382377
38. Ebert PJ, Jiang S, Xie J, Li QJ, Davis MM. (2009) An endogenous positively selecting peptide enhances mature T cell responses and becomes an autoantigen in the absence of microRNA miR-181a. Nat. Immunol. 10 : 1162–1169 doi: 10.1038/ni.1797 19801983
39. Haasch D, Chen YW, Reilly RM, Chiou XG, Koterski S, et al. (2002) T cell activation induces a noncoding RNA transcript sensitive to inhibition by immunosuppressant drugs and encoded by the proto-oncogene, BIC. Cell Immunol. 217 : 78–86. 12426003
40. Monticelli S, Ansel KM, Xiao C, Socci ND, Krichevsky AM, et al. (2005). MicroRNA profiling of the murine hematopoietic system. Genome Biol. 6: R71. 16086853
41. Barski A, Jothi R, Cuddapah S, Cui K, Roh TY, et al. (2009). Chromatin poises miRNA - and protein-coding genes for expression. Genome Res. 19 : 1742–1751. doi: 10.1101/gr.090951.109 19713549
42. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. (2008) Proliferating cells express mRNAs with shortened 3' untranslated regions and fewer microRNA target sites. Science. 320 : 1643–1647. doi: 10.1126/science.1155390 18566288
43. Jiang S, Li C, Olive V, Lykken E, Feng F, et al. (2011) Molecular dissection of the miR-17-92 cluster's critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation. Blood 118 : 5487–5497. doi: 10.1182/blood-2011-05-355644 21972292
44. Wu H, Neilson JR, Kumar P, Manocha M, Shankar P, et al. (2007). miRNA profiling of naïve, effector and memory CD8 T cells. PLoS One. 2: e1020. 17925868
45. Bronevetsky Y, Villarino AV, Eisley CJ, Barbeau R, Barczak AJ, et al. (2013) T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire. J Exp Med. 210 : 417–432. doi: 10.1084/jem.20111717 23382546
46. Kelly K, Siebenlist U. (1988). Mitogenic activation of normal T cells leads to increased initiation of transcription in the c-myc locus. J Biol Chem. 263 : 4828–4831. 3127392
47. Patrussi L, Savino MT, Pellegrini M, Paccani SR, Migliaccio E, et al. (2005) Cooperation and selectivity of the two Grb2 binding sites of p52Shc in T-cell antigen receptor signaling to Ras family GTPases and Myc-dependent survival. Oncogene 24 : 2218–2228 15688026
48. O'Donnell K.A., Wentzel E.A., Zeller K.I., Dang C.V., Mendell J.T. (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435 : 839–843. 15944709
49. Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, et al. (2011). MicroRNAs can generate thresholds in target gene expression. Nat Genet. 43 : 854–859. doi: 10.1038/ng.905 21857679
50. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, et al. (2003) Dicer is essential for mouse development. Nat Genet. 35 : 215–217. 14528307
51. Raser J.M., and O’Shea E.K. (2005). Noise in gene expression: origins, consequences, and control. Science 309 : 2010–2013. 16179466
52. Gascoigne NR, Palmer E. (2011). Signaling in thymic selection. Curr Opin Immunol. 23 : 207–212 doi: 10.1016/j.coi.2010.12.017 21242076
53. Muljo SA, Ansel KM, Kanellopoulou C, Livingston DM, Rao A, et al. (2005) Aberrant T cell differentiation in the absence of Dicer. J Exp Med. 202 : 261–269. 16009718
54. Lu LF, Boldin MP, Chaudhry A, Lin LL, Taganov KD, et al. (2010) Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 142 : 914–929. doi: 10.1016/j.cell.2010.08.012 20850013
55. Henao-Mejia J, Williams A, Goff LA, Staron M, Licona-Limón P, et al. (2013). The microRNA miR-181 is a critical cellular metabolic rheostat essential for NKT cell ontogenesis and lymphocyte development and homeostasis. Immunity 38 : 984–997. doi: 10.1016/j.immuni.2013.02.021 23623381
56. Ziętara N, Łyszkiewicz M, Witzlau K, Naumann R, Hurwitz R, et al. (2013) Critical role for miR-181a/b-1 in agonist selection of invariant natural killer T cells. Proc Natl Acad Sci USA 110 : 7407–7412. doi: 10.1073/pnas.1221984110 23589855
57. Rupp LJ, Brady BL, Carpenter AC, De Obaldia ME, Bhandoola A, et al. (2014) The microRNA Biogenesis Machinery Modulates Lineage Commitment during αβ T Cell Development. J Immunol. 193 : 4032–4042. doi: 10.4049/jimmunol.1401359 25217159
58. Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, et al. (2008) T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA 105 : 7797–7802. doi: 10.1073/pnas.0800928105 18509048
59. Merkenschlager M, Graf D, Lovatt M, Bommhardt U, Zamoyska R, et al. (1997) How many thymocytes audition for selection? J Exp Med. 186 : 1149–1158. 9314563
60. Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, et al. (2014). RefSeq: an update on mammalian reference sequences. Nucleic Acids Res. 42: D756–63. doi: 10.1093/nar/gkt1114 24259432
61. Kozomara A, Griffiths-Jones S. (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42: D68–73. doi: 10.1093/nar/gkt1181 24275495
62. Wöbke TK, von Knethen A, Steinhilber D, Sorg BL (2013). CD69 is a TGF-β/1α,25-dihydroxyvitamin D3 target gene in monocytes. PLoS One 8: e64635. doi: 10.1371/journal.pone.0064635 23696902
63. Battich N, Stoeger T, Pelkmans L (2013). Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat Methods 10 : 1127–1133. doi: 10.1038/nmeth.2657 24097269
64. Kirigin FF, Lindstedt K, Sellars M, Ciofani M, Low SL, et al. (2012) Dynamic microRNA gene transcription and processing during T cell development. J Immunol. 188 : 3257–3267. doi: 10.4049/jimmunol.1103175 22379031
Štítky
Genetika Reprodukčná medicína
Článek 2014 Reviewer Thank YouČlánek Closing the Gap between Knowledge and Clinical Application: Challenges for Genomic TranslationČlánek Discovery of CTCF-Sensitive Cis-Spliced Fusion RNAs between Adjacent Genes in Human Prostate CellsČlánek K-homology Nuclear Ribonucleoproteins Regulate Floral Organ Identity and Determinacy in ArabidopsisČlánek A Nitric Oxide Regulated Small RNA Controls Expression of Genes Involved in Redox Homeostasis inČlánek Contribution of the Two Genes Encoding Histone Variant H3.3 to Viability and Fertility in MiceČlánek The Genetic Architecture of the Genome-Wide Transcriptional Response to ER Stress in the Mouse
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2015 Číslo 2- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- 2014 Reviewer Thank You
- Systematic Cell-Based Phenotyping of Missense Alleles Empowers Rare Variant Association Studies: A Case for and Myocardial Infarction
- African Glucose-6-Phosphate Dehydrogenase Alleles Associated with Protection from Severe Malaria in Heterozygous Females in Tanzania
- Genomics of Divergence along a Continuum of Parapatric Population Differentiation
- microRNAs Regulate Cell-to-Cell Variability of Endogenous Target Gene Expression in Developing Mouse Thymocytes
- A Rolling Circle Replication Mechanism Produces Multimeric Lariats of Mitochondrial DNA in
- Closing the Gap between Knowledge and Clinical Application: Challenges for Genomic Translation
- Partially Redundant Enhancers Cooperatively Maintain Mammalian Expression Above a Critical Functional Threshold
- Discovery of Transcription Factors and Regulatory Regions Driving Tumor Development by ATAC-seq and FAIRE-seq Open Chromatin Profiling
- Mutations in Result in Ocular Coloboma, Microcornea and Cataracts
- A Genome-Wide Hybrid Incompatibility Landscape between and
- Recurrent Evolution of Melanism in South American Felids
- Discovery of CTCF-Sensitive Cis-Spliced Fusion RNAs between Adjacent Genes in Human Prostate Cells
- Tissue Expression Pattern of PMK-2 p38 MAPK Is Established by the miR-58 Family in
- Essential Role for Endogenous siRNAs during Meiosis in Mouse Oocytes
- Matrix Metalloproteinase 2 Is Required for Ovulation and Corpus Luteum Formation in
- Evolutionary Signatures amongst Disease Genes Permit Novel Methods for Gene Prioritization and Construction of Informative Gene-Based Networks
- RR-1 Cuticular Protein TcCPR4 Is Required for Formation of Pore Canals in Rigid Cuticle
- GC-Content Evolution in Bacterial Genomes: The Biased Gene Conversion Hypothesis Expands
- Proteotoxic Stress Induces Phosphorylation of p62/SQSTM1 by ULK1 to Regulate Selective Autophagic Clearance of Protein Aggregates
- K-homology Nuclear Ribonucleoproteins Regulate Floral Organ Identity and Determinacy in Arabidopsis
- A Nitric Oxide Regulated Small RNA Controls Expression of Genes Involved in Redox Homeostasis in
- HYPER RECOMBINATION1 of the THO/TREX Complex Plays a Role in Controlling Transcription of the Gene in Arabidopsis
- Mitochondrial and Cytoplasmic ROS Have Opposing Effects on Lifespan
- Structured Observations Reveal Slow HIV-1 CTL Escape
- An Integrative Multi-scale Analysis of the Dynamic DNA Methylation Landscape in Aging
- Combining Natural Sequence Variation with High Throughput Mutational Data to Reveal Protein Interaction Sites
- Transhydrogenase Promotes the Robustness and Evolvability of Deficient in NADPH Production
- Regulators of Autophagosome Formation in Muscles
- Genomic Selection and Association Mapping in Rice (): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic Selection in Elite, Tropical Rice Breeding Lines
- Eye Selector Logic for a Coordinated Cell Cycle Exit
- Inflammation-Induced Cell Proliferation Potentiates DNA Damage-Induced Mutations
- The DNA Polymerase δ Has a Role in the Deposition of Transcriptionally Active Epigenetic Marks, Development and Flowering
- Contribution of the Two Genes Encoding Histone Variant H3.3 to Viability and Fertility in Mice
- Membrane Recognition and Dynamics of the RNA Degradosome
- P-TEFb, the Super Elongation Complex and Mediator Regulate a Subset of Non-paused Genes during Early Embryo Development
- is a Long Non-coding RNA in JNK Signaling in Epithelial Shape Changes during Drosophila Dorsal Closure
- A Pleiotropy-Informed Bayesian False Discovery Rate Adapted to a Shared Control Design Finds New Disease Associations From GWAS Summary Statistics
- Genome-wide Association Study Identifies Shared Risk Loci Common to Two Malignancies in Golden Retrievers
- and Hyperdrive Mechanisms (in Mouse Meiosis)
- Elevated In Vivo Levels of a Single Transcription Factor Directly Convert Satellite Glia into Oligodendrocyte-like Cells
- Systemic Delivery of MicroRNA-101 Potently Inhibits Hepatocellular Carcinoma by Repressing Multiple Targets
- Pooled Sequencing of 531 Genes in Inflammatory Bowel Disease Identifies an Associated Rare Variant in and Implicates Other Immune Related Genes
- Abscission Is Regulated by the ESCRT-III Protein Shrub in Germline Stem Cells
- Temperature Stress Mediates Decanalization and Dominance of Gene Expression in
- Transcriptome Wide Annotation of Eukaryotic RNase III Reactivity and Degradation Signals
- The Exosome Component Rrp6 Is Required for RNA Polymerase II Termination at Specific Targets of the Nrd1-Nab3 Pathway
- Sex-specific -regulatory Variation on the X Chromosome
- Regulation of Toll-like Receptor Signaling by the SF3a mRNA Splicing Complex
- Modeling of the Human Alveolar Rhabdomyosarcoma Chromosome Translocation in Mouse Myoblasts Using CRISPR-Cas9 Nuclease
- Asymmetry of the Budding Yeast Tem1 GTPase at Spindle Poles Is Required for Spindle Positioning But Not for Mitotic Exit
- TIM Binds Importin α1, and Acts as an Adapter to Transport PER to the Nucleus
- Antagonistic Roles for KNOX1 and KNOX2 Genes in Patterning the Land Plant Body Plan Following an Ancient Gene Duplication
- The Genetic Architecture of the Genome-Wide Transcriptional Response to ER Stress in the Mouse
- Fatty Acid Synthase Cooperates with Glyoxalase 1 to Protect against Sugar Toxicity
- Region-Specific Activation of mRNA Translation by Inhibition of Bruno-Mediated Repression
- An Essential Role of the Arginine Vasotocin System in Mate-Guarding Behaviors in Triadic Relationships of Medaka Fish ()
- Interaction between the tRNA-Binding and C-Terminal Domains of Yeast Gcn2 Regulates Kinase Activity In Vivo
- Hyper-Acetylation of Histone H3K56 Limits Break-Induced Replication by Inhibiting Extensive Repair Synthesis
- Prodomain Removal Enables Neto to Stabilize Glutamate Receptors at the Neuromuscular Junction
- Recent Selective Sweeps in North American Show Signatures of Soft Sweeps
- Identification and Functional Analysis of Healing Regulators in
- A Multi-Megabase Copy Number Gain Causes Maternal Transmission Ratio Distortion on Mouse Chromosome 2
- Drosophila Casein Kinase I Alpha Regulates Homolog Pairing and Genome Organization by Modulating Condensin II Subunit Cap-H2 Levels
- The Hippo Pathway Regulates Homeostatic Growth of Stem Cell Niche Precursors in the Ovary
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Genomic Selection and Association Mapping in Rice (): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic Selection in Elite, Tropical Rice Breeding Lines
- Discovery of Transcription Factors and Regulatory Regions Driving Tumor Development by ATAC-seq and FAIRE-seq Open Chromatin Profiling
- Evolutionary Signatures amongst Disease Genes Permit Novel Methods for Gene Prioritization and Construction of Informative Gene-Based Networks
- Proteotoxic Stress Induces Phosphorylation of p62/SQSTM1 by ULK1 to Regulate Selective Autophagic Clearance of Protein Aggregates
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy