A Multi-Megabase Copy Number Gain Causes Maternal Transmission Ratio Distortion on Mouse Chromosome 2


One of the strongest expectations in genetics is that chromosomes segregate randomly during meiosis. However, genetic loci that exhibit transmission ratio distortion (TRD) are sometimes observed in offspring of F1 hybrids. Meiotic drive is a type of non-Mendelian inheritance in which a “selfish” genetic element exploits asymmetric female meiotic cell division to promote its preferential inclusion in ova. We previously reported TRD on Chr 2 in the CC, a mouse recombinant inbred panel with contributions from three Mus musculus subspecies. Here we show that maternal TRD consistent with a novel meiotic drive system is caused by a copy number gain. This mutation is similar in size and structure to other known meiotic drive responders, such as the knobs of maize. A deletion of most of the copies is sufficient to restore Mendelian segregation, proving that the copy number variant is causative of the observed TRD. In the CC, and also the related DO population, the transmission frequency of the favored allele varies dependent on genetic background, demonstrating that this system is under genetic control. In conclusion, we describe a novel wild-derived meiotic drive locus on mouse Chr 2 that exploits female meiosis asymmetry to violate the Laws of Mendelian inheritance.


Vyšlo v časopise: A Multi-Megabase Copy Number Gain Causes Maternal Transmission Ratio Distortion on Mouse Chromosome 2. PLoS Genet 11(2): e32767. doi:10.1371/journal.pgen.1004850
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pgen.1004850

Souhrn

One of the strongest expectations in genetics is that chromosomes segregate randomly during meiosis. However, genetic loci that exhibit transmission ratio distortion (TRD) are sometimes observed in offspring of F1 hybrids. Meiotic drive is a type of non-Mendelian inheritance in which a “selfish” genetic element exploits asymmetric female meiotic cell division to promote its preferential inclusion in ova. We previously reported TRD on Chr 2 in the CC, a mouse recombinant inbred panel with contributions from three Mus musculus subspecies. Here we show that maternal TRD consistent with a novel meiotic drive system is caused by a copy number gain. This mutation is similar in size and structure to other known meiotic drive responders, such as the knobs of maize. A deletion of most of the copies is sufficient to restore Mendelian segregation, proving that the copy number variant is causative of the observed TRD. In the CC, and also the related DO population, the transmission frequency of the favored allele varies dependent on genetic background, demonstrating that this system is under genetic control. In conclusion, we describe a novel wild-derived meiotic drive locus on mouse Chr 2 that exploits female meiosis asymmetry to violate the Laws of Mendelian inheritance.


Zdroje

1. Pardo-Manuel de Villena F, Sapienza C (2001) Nonrandom segregation during meiosis: the unfairness of females. Mamm Genome 12: 331–339. 11331939

2. Morgan TH, Bridges CB, Sturtevant AH (1925) The genetics of Drosophila melanogaster. Garland Publishing, Inc. 20772271

3. Gershenson S (1928) A new sex-ratio abnormality in DROSOPHILA OBSCURA. Genetics 13: 488–507. 17246563

4. Chesley P, Dunn LC (1936) The inheritance of Taillessness (Anury) in the house mouse. Genetics 21: 525–536. 17246810

5. Sandler L, Hiraizumi Y, Sandler I (1959) Meiotic drive in natural populations of Drosophila melanogaster. I. the cytogenetic basis of segregation-distortion. Genetics 44: 233–250. 17247821

6. Turner BC, Perkins DD (1979) Spore killer, a chromosomal factor in Neurospora that kills meiotic products not containing it. Genetics 93: 587–606. 17248973

7. Lyon MF (1984) Transmission ratio distortion in mouse t-haplotypes is due to multiple distorter genes acting on a responder locus. Cell 37: 621–628. 6722884

8. Lyttle TW (1991) Segregation distorters. Annu Rev Genet 25: 511–557. 1812815

9. Adams D, Baldock R, Bhattacharya S, Copp AJ, Dickinson M, et al. (2013) Bloomsbury report on mouse embryo phenotyping: recommendations from the IMPC workshop on embryonic lethal screening. Dis Model Mech 6: 571–579. doi: 10.1242/dmm.011833 23519032

10. Sandler L, Novitski E (1957) Meiotic drive as an evolutionary force. Am. Nat: 105–110.

11. Buckler ES, Phelps-Durr TL, Buckler CS, Dawe RK, Doebley JF, et al. (1999) Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics 153: 415–426. 10471723

12. Pardo-Manuel de Villena F, Sapienza C (2001) Transmission ratio distortion in offspring of heterozygous female carriers of Robertsonian translocations. Hum Genet 108: 31–36. 11214904

13. Fishman L, Willis JH (2005) A novel meiotic drive locus almost completely distorts segregation in Mimulus (monkeyflower) hybrids. Genetics 169: 347–353. 15466426

14. Kim K, Thomas S, Howard IB, Doherty HE, Ideraabdullah FY, et al. (2005) Meiotic drive at the Om locus in wild‐derived inbred mouse strains. Bio J Linn Soc 84: 487–492.

15. Pardo-Manuel de Villena F, Sapienza C (2001) Female meiosis drives karyotypic evolution in mammals. Genetics 159: 1179–1189. 11729161

16. Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293: 1098–1102. 11498581

17. Hewitt GM (1976) Meiotic drive for B-chromosomes in the primary oocytes of Myrmeleotettix maculatus (Orthopera: Acrididae). Chromosoma 56: 381–391. 949923

18. Pardo-Manuel de Villena F (2004) Evolution of the mammalian karyotype. In: Ruvinsky A JAM editors. Mammalian Genomics. CABI. pp. 317–348. doi: 10.1016/j.talanta.2003.10.048 18969434

19. Pardo-Manuel De Villena F, de la Casa-Esperón E, Williams JW, Malette J-M, Rosa M and Sapienza C (2000) Heritability of the maternal meiotic drive system linked to Om and high-resolution mapping of the Responder locus in mouse. Genetics 155: 283–289. 10790402

20. Ruvinsky A (1995) Meiotic drive in female mice: an essay. Mamm Genome 6: 315–320. 7626881

21. Fishman L, Saunders A (2008) Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science 322: 1559–1562. doi: 10.1126/science.1161406 19056989

22. Agulnik S, Adolph S, Winking H, Traut W (1993) Zoogeography of the chromosome 1 HSR in natural populations of the house mouse (Mus musculus). Hereditas 119: 39–46. 8244755

23. Motoo K and Kayano H (1961) The Maintenance of supernumerary chromosomes in wild populations of Lilium callosum by preferential segregation. Genetics 46: 1699. 14456042

24. Yang H, Wang JR, Didion JP, Buus RJ, Bell TA, et al. (2011) Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet 43: 648–655. doi: 10.1038/ng.847 21623374

25. Siracusa LD, Alvord WG, Bickmore WA, Jenkins NA, Copeland NG (1991) Interspecific backcross mice show sex-specific differences in allelic inheritance. Genetics 128: 813–821. 1916246

26. Rowe LB, Nadeau JH, Turner R, Frankel WN, Letts VA, et al. (1994) Maps from two interspecific backcross DNA panels available as a community genetic mapping resource. Mamm Genome 5: 253–274. 8075499

27. Montagutelli X, Turner R, Nadeau JH (1996) Epistatic control of non-Mendelian inheritance in mouse interspecific crosses. Genetics 143: 1739–1752. 8844160

28. Turcotte K, Loredo-Osti JC, Fortin P, Schurr E, Morgan K, et al. (2006) Complex genetic control of susceptibility to Mycobacterium bovis (Bacille Calmette-Guérin) infection in wild-derived Mus spretus mice. Genes Immun 7: 684–687. 17024129

29. Rocha JL, Eisen EJ, Siewerdt F, Vleck LD, Pomp D (2004) A large-sample QTL study in mice: III. Reproduction. Mamm Genome 15: 878–886. 15672592

30. Swallow JG, Carter PA, Garland T Jr (1998) Artificial selection for increased wheel-running behavior in house mice. Behavior Genetics 28: 227–237. 9670598

31. Kelly SA, Nehrenberg DL, Peirce JL, Hua K, Steffy BM, et al. (2010) Genetic architecture of voluntary exercise in an advanced intercross line of mice. Physiol Genomics 42: 190–200. doi: 10.1152/physiolgenomics.00028.2010 20388837

32. Leamy LJ, Kelly SA, Hua K, Pomp D (2012) Exercise and diet affect quantitative trait loci for body weight and composition traits in an advanced intercross population of mice. Physiol Genomics 44: 1141–1153. doi: 10.1152/physiolgenomics.00115.2012 23048196

33. Aylor DL, Valdar W, Foulds-Mathes W, Buus RJ, Verdugo RA, et al. (2011) Genetic analysis of complex traits in the emerging Collaborative Cross. Genome Res 21: 1213–1222. doi: 10.1101/gr.111310.110 21406540

34. Durrant C, Tayem H, Yalcin B, Cleak J, Goodstadt L, et al. (2011) Collaborative Cross mice and their power to map host susceptibility to Aspergillus fumigatus infection. Genome Res 21: 1239–1248. doi: 10.1101/gr.118786.110 21493779

35. Collaborative Cross Consortium (2012) The genome architecture of the Collaborative Cross mouse genetic reference population. Genetics 190: 389–401. doi: 10.1534/genetics.111.132639 22345608

36. Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R, et al. (2012) High-resolution genetic mapping using the mouse Diversity Outbred population. Genetics 190: 437–447. doi: 10.1534/genetics.111.132597 22345611

37. Keane TM, Goodstadt L, Danecek P, White MA, Wong K, et al. (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477: 289–294. doi: 10.1038/nature10413 21921910

38. Yalcin B, Wong K, Agam A, Goodson M, Keane TM, et al. (2011) Sequence-based characterization of structural variation in the mouse genome. Nature 477: 326–329. doi: 10.1038/nature10432 21921916

39. Wong K, Bumpstead S, van der Weyden L, Reinholdt LG, Wilming LG, et al. (2012) Sequencing and characterization of the FVB/NJ mouse genome. Genome Biol 13: R72. doi: 10.1186/gb-2012-13-8-r72 22916792

40. Liu EY, Morgan AP, Chesler EJ, Wang W, Churchill GA, et al. (2014) High-resolution sex-specific linkage maps of the mouse reveal polarized distribution of crossovers in male germline. Genetics 197: 91–106. doi: 10.1534/genetics.114.161653 24578350

41. Lenormand T, Fel-Clair F, Manolakou K, Alibert P, Britton-Davidian J (1997) Chromosomal transmission bias in laboratory hybrids between wild strains of the two European subspecies of house mice. Genetics 147: 1279–1287. 9383070

42. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562. 12466850

43. Eversley CD, Clark T, Xie Y, Steigerwalt J, Bell TA, et al. (2010) Genetic mapping and developmental timing of transmission ratio distortion in a mouse interspecific backcross. BMC Genet 11: 98. doi: 10.1186/1471-2156-11-98 21044349

44. Steckelberg A-L, Boehm V, Gromadzka AM, Gehring NH (2012) CWC22 connects pre-mRNA splicing and exon junction complex assembly. Cell Rep 2: 454–461. doi: 10.1016/j.celrep.2012.08.017 22959432

45. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, et al. (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. P Natl Acad Sci USA 101: 6062–6067. 15075390

46. Crowley JJ, Zhabotynsky V, Sun W, Huang S, Pakatci K, et al. (2015) Pervasive allelic imbalance revealed by allele-specific gene expression in highly divergent mouse crosses. Nat genet. (in press)

47. Suzuki H, Shimada T, Terashima M, Tsuchiya K, Aplin K (2004) Temporal, spatial, and ecological modes of evolution of Eurasian Mus based on mitochondrial and nuclear gene sequences. Mol Phylogenet Evol 33: 626–646. 15522792

48. Song Y, Endepols S, Klemann N, Richter D, Matuschka F-R, et al. (2011) Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr Biol 21: 1296–1301. doi: 10.1016/j.cub.2011.06.043 21782438

49. Greene-Till R, Zhao Y, Hardies SC (2000) Gene flow of unique sequences between Mus musculus domesticus and Mus spretus. Mamm Genome 11: 225–230. 10723728

50. Weichenhan D, Kunze B, Winking H, van Geel M, Osoegawa K, et al. (2001) Source and component genes of a 6–200 Mb gene cluster in the house mouse. Mamm Genome 12: 590–594. 11471051

51. Traut W, Rahn IM, Winking H, Kunze B, Weichehan D (2001) Evolution of a 6–200 Mb long-range repeat cluster in the genus Mus. Chromosoma 110: 247–252. 11534816

52. Huang LO, Labbe A, Infante-Rivard C (2013) Transmission ratio distortion: review of concept and implications for genetic association studies. Hum Genet 132: 245–263. doi: 10.1007/s00439-012-1257-0 23242375

53. Rogala AR, Morgan AP, Christensen AM, Gooch TJ, Bell TA, et al. (2014) The Collaborative Cross as a Resource for Modeling Human Disease: CC011/Unc, a New Mouse Model for Spontaneous Colitis. Mamm Genome 25: 95–108. doi: 10.1007/s00335-013-9499-2 24487921

54. Eisener-Dorman AF, Grabowski-Boase L, Steffy BM, Wiltshire T, Tarantino LM (2010) Quantitative trait locus and haplotype mapping in closely related inbred strains identifies a locus for open field behavior. Mamm Genome 21: 231–246. doi: 10.1007/s00335-010-9260-z 20473506

55. Kumar V, Kim K, Joseph C, Kourrich S, Yoo S-H, et al. (2013) C57BL/6N mutation in cytoplasmic FMRP interacting protein 2 regulates cocaine response. Science 342: 1508–1512. doi: 10.1126/science.1245503 24357318

56. Gregg C, Zhang J, Butler JE, Haig D, Dulac C (2010) Sex-specific parent-of-origin allelic expression in the mouse brain. Science 329: 682–685. doi: 10.1126/science.1190831 20616234

57. Didion JP, Yang H, Sheppard K, Fu C-P, McMillan L, et al. (2012) Discovery of novel variants in genotyping arrays improves genotype retention and reduces ascertainment bias. BMC Genomics 13: 34. doi: 10.1186/1471-2164-13-34 22260749

58. Calaway JD, Lenarcic AB, Didion JP, Wang JR, Searle JB, et al. (2013) Genetic architecture of skewed X inactivation in the laboratory mouse. PLoS Genet 9: e1003853. doi: 10.1371/journal.pgen.1003853 24098153

59. Mihola O, Trachtulec Z, Vlcek C, Schimenti JC, Forejt J (2009) A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science 323: 373–375. doi: 10.1126/science.1163601 19074312

60. Didion JP, Pardo-Manuel de Villena F (2013) Deconstructing Mus gemischus: advances in understanding ancestry, structure, and variation in the genome of the laboratory mouse. Mamm Genome 24: 1–20. doi: 10.1007/s00335-012-9441-z 23223940

61. Guénet J-L, bonhomme F (2003) Wild mice: an ever-increasing contribution to a popular mammalian model. Trends Genet 19: 24–31. 12493245

62. Chmátal L, Gabriel SI, Mitsainas GP, Martínez-Vargas J, Ventura J, et al. (2014) Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Curr Biol 24: 1–6. doi: 10.1016/j.cub.2013.11.017 24332542

63. Kanizay LB, Albert PS, Birchler JA, Dawe RK (2013) Intragenomic conflict between the two major knob repeats of maize. Genetics 194: 81–89. doi: 10.1534/genetics.112.148882 23457233

64. Dietrich WF, Miller J, Steen R, Merchant MA, Damron-Boles D, et al. (1996) A comprehensive genetic map of the mouse genome. Nature 380: 149–152. 8600386

65. Rowe LB, Barter ME, Kelmenson JA, Eppig JT (2003) The comprehensive mouse radiation hybrid map densely cross-referenced to the recombination map: a tool to support the sequence assemblies. Genome Res 13: 122–133. 12529315

66. Burgio G, Szatanik M, Guénet J-L, Arnau M-R, Panthier J-J, et al. (2007) Interspecific recombinant congenic strains between C57BL/6 and mice of the Mus spretus species: a powerful tool to dissect genetic control of complex traits. Genetics 177: 2321–2333. 17947429

67. Eisen EJ, Bandy T (1977) Correlated responses in growth and body composition of replicated single-trait and index selected lines of mice. Theor Appl Genet 49: 133–144. doi: 10.1007/BF00281711 24407170

68. Kelly SA, Bell TA, Selitsky SR, Buus RJ, Hua K, et al. (2013) A novel intronic single nucleotide polymorphism in the myosin heavy polypeptide 4 gene is responsible for the mini-muscle phenotype characterized by major reduction in hind-limb muscle mass in mice. Genetics 195: 1385–1395. doi: 10.1534/genetics.113.154476 24056412

69. Allan MF, Eisen EJ, Pomp D (2005) Genomic mapping of direct and correlated responses to long-term selection for rapid growth rate in mice. Genetics 170: 1863–1877. 15944354

70. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, et al. (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153: 910–918. doi: 10.1016/j.cell.2013.04.025 23643243

71. Esvelt KM, Smidler AL, Catteruccia F, Church GM, Tautz D (2014) Concerning RNA-guided gene drives for the alteration of wild populations. eLife Sciences 3: e03401. doi: 10.7554/eLife.03401 25035423

72. Yang H, Ding Y, Hutchins LN, Szatkiewicz J, Bell TA, et al. (2009) A customized and versatile high-density genotyping array for the mouse. Nat Methods 6: 663–666. doi: 10.1038/nmeth.1359 19668205

73. Welsh CE, McMillan L (2012) Accelerating the inbreeding of multi-parental recombinant inbred lines generated by sibling matings. G3 2: 191–198. doi: 10.1534/g3.111.001784 22384397

74. Petkov PM, Ding Y, Cassell MA, Zhang W, Wagner G, et al. (2004) An efficient SNP system for mouse genome scanning and elucidating strain relationships. Genome Res 14: 1806–1811. 15342563

75. Liu EY, Zhang Q, McMillan L, Pardo-Manuel de Villena F, Wang W (2010) Efficient genome ancestry inference in complex pedigrees with inbreeding. Bioinformatics 26: i199–i207. doi: 10.1093/bioinformatics/btq187 20529906

76. Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12: 656–664. 11932250

77. Affymetrix Inc (2007) BRLMM-P: a Genotype Calling Method for the SNP 5.0 Array. http://media.affymetrix.com/support/technical/whitepapers/brlmmp_whitepaper.pdf doi: 10.1093/jxb/erm028 25506957

78. Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69: 315–324. 16718932

79. Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889–890. 12724300

80. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359. doi: 10.1038/nmeth.1923 22388286

81. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079. doi: 10.1093/bioinformatics/btp352 19505943

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Hereditární TTR amyloidóza – vzácné, nebo jen neodhalené onemocnění? 2. díl
nový kurz

Eozinofilní granulomatóza s polyangiitidou

Betablokátory a Ca antagonisté z jiného úhlu
Autori: prof. MUDr. Michal Vrablík, Ph.D., MUDr. Petr Janský

Autori: doc. MUDr. Petr Čáp, Ph.D.

Farmakoterapie akutní a chronické bolesti

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Nemáte účet?  Registrujte sa

Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa