#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genome-Wide Analysis of -Regulated and Phased Small RNAs Underscores the Importance of the ta-siRNA Pathway to Maize Development


Mutations in maize leafbladeless1 (lbl1) that disrupt ta-siRNA biogenesis give rise to plants with thread-like leaves that have lost top/bottom polarity. We used genomic approaches to identify lbl1-dependent small RNAs and their targets to determine the basis for these polarity defects. This revealed substantial diversity in small RNA pathways across plant species and identified unexpected roles for LBL1 in the regulation of repetitive elements within the maize genome. We further show that only ta-siRNA loci belonging to the TAS3 family function in the maize vegetative apex. The TAS3-derived tasiR-ARFs are the main ta-siRNA active in the apex, and misregulation of their ARF3 targets emerges as the basis for the lbl1 leaf polarity defects. Supporting this, we show that plants expressing arf3a transcripts insensitive to tasiR-ARF-directed cleavage recapitulate the phenotypes observed in lbl1. The TAS3 ta-siRNA pathway, including the regulation of ARF3 genes, is conserved throughout land plant evolution, yet the phenotypes of plants defective for ta-siRNA biogenesis are strikingly different. Our data leads us to propose that divergence in the processes regulated by the ARF3 transcription factors or the spatiotemporal pattern during development in which these proteins act, underlies the diverse developmental contributions of this small RNA pathway across plants.


Vyšlo v časopise: Genome-Wide Analysis of -Regulated and Phased Small RNAs Underscores the Importance of the ta-siRNA Pathway to Maize Development. PLoS Genet 10(12): e32767. doi:10.1371/journal.pgen.1004826
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004826

Souhrn

Mutations in maize leafbladeless1 (lbl1) that disrupt ta-siRNA biogenesis give rise to plants with thread-like leaves that have lost top/bottom polarity. We used genomic approaches to identify lbl1-dependent small RNAs and their targets to determine the basis for these polarity defects. This revealed substantial diversity in small RNA pathways across plant species and identified unexpected roles for LBL1 in the regulation of repetitive elements within the maize genome. We further show that only ta-siRNA loci belonging to the TAS3 family function in the maize vegetative apex. The TAS3-derived tasiR-ARFs are the main ta-siRNA active in the apex, and misregulation of their ARF3 targets emerges as the basis for the lbl1 leaf polarity defects. Supporting this, we show that plants expressing arf3a transcripts insensitive to tasiR-ARF-directed cleavage recapitulate the phenotypes observed in lbl1. The TAS3 ta-siRNA pathway, including the regulation of ARF3 genes, is conserved throughout land plant evolution, yet the phenotypes of plants defective for ta-siRNA biogenesis are strikingly different. Our data leads us to propose that divergence in the processes regulated by the ARF3 transcription factors or the spatiotemporal pattern during development in which these proteins act, underlies the diverse developmental contributions of this small RNA pathway across plants.


Zdroje

1. ChenX (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 22: 361–67.

2. PeragineA, YoshikawaM, WuG, AlbrechtH, PoethigR (2004) SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18: 2368–2379.

3. VazquezF, VaucheretH, RajagopalanR, LepersC, GasciolliV, et al. (2004) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16: 69–79.

4. AllenE, XieZ, GustafsonA, CarringtonJ (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121: 207–221.

5. AxtellM, JanC, RajagopalanR, BartelD (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127: 565–577.

6. CuperusJ, CarbonellA, FahlgrenN, Garcia-RuizH, BurkeR, et al. (2010) Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struc Mol Biol 17: 997–1003.

7. ManavellaP, KoenigD, WeigelD (2012) Plant secondary siRNA production determined by microRNA-duplex structure. Proc Natl Acad Sci USA 109: 2461–2466.

8. FahlgrenN, MontgomeryT, HowellM, AllenE, DvorakS, et al. (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16: 939–944.

9. HunterC, WillmannM, WuG, YoshikawaM, de la Luz Gutiérrez-NavaM, et al. (2006) Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 133: 2973–2981.

10. HusbandsA, ChitwoodD, PlavskinY, TimmermansM (2009) Signals and prepatterns: new insights into organ polarity in plants. Genes Dev 23: 1986–1997.

11. MontgomeryT, HowellM, CuperusJ, LiD, HansenJ, et al. (2008) Specificity of ARGONAUTE7–miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133: 128–141.

12. ChitwoodD, NogueiraF, HowellM, MontgomeryT, CarringtonJ, et al. (2009) Pattern formation via small RNA mobility. Genes Dev 23: 549–554.

13. AdenotX, ElmayanT, LauresserguesD, BoutetS, BouchéN, et al. (2006) DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol 16: 927–932.

14. ZhouC, HanL, FuC, WenJ, ChengX, et al. (2013) The trans-acting short interfering RNA3 pathway and NO APICAL MERISTEM antagonistically regulate leaf margin development and lateral organ separation, as revealed by analysis of argonaute7/lobed leaflet1 mutant in Medicago truncatula. Plant Cell 25: 4845–4862.

15. NagasakiH, ItohJ, HayashiK, HibaraK, Satoh-NagasawaN, et al. (2007) The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc Natl Acad Sci U S A 104: 14867–14871.

16. YifharT, PekkerI, PeledD, FriedlanderG, PistunovA, et al. (2012) Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome. Plant Cell 24: 3575–3589.

17. NogueiraF, MadiS, ChitwoodD, JuarezM, TimmermansM (2007) Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev 21: 750–755.

18. DouglasR, WileyD, SarkarA, SpringerN, TimmermansM, et al. (2010) ragged seedling2 encodes an ARGONAUTE7-like protein required for mediolateral expansion, but not dorsiventrality, of maize leaves. Plant Cell 22: 1441–1451.

19. FeiQ, XiaR, MeyersBC (2013) Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25: 2400–2415.

20. RajagopalanR, VaucheretH, TrejoJ, BartelDP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20: 3407–3425.

21. HowellM, FahlgrenN, ChapmanE, CumbieJ, SullivanC, et al. (2007) Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and ta-siRNA-directed targeting. Plant Cell 19: 926–942.

22. XiaR, ZhuH, AnYQ, BeersEP, LiuZ (2012) Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol 13: R47.

23. XiaR, MeyersB, LiuZ, BeersE, YeS, et al. (2013) MicroRNA superfamilies descended from miR390 and their roles in secondary small interfering RNA biogenesis in eudicots. Plant Cell 25: 1555–1572.

24. ArifM, FattashI, MaZ, ChoS, BeikeA, et al. (2012) DICER-LIKE3 activity in Physcomitrella patens DICER-LIKE4 mutants causes severe developmental dysfunction and sterility. Mol Plant 5: 1281–1294.

25. LiF, OrbanR, BakerB (2012) SoMART: A web server for plant miRNA, ta-siRNA and target gene analysis. Plant J 70: 891–901.

26. JohnsonC, KasprzewskaA, TennessenK, FernandesJ, NanG, et al. (2009) Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res 19: 1429–1440.

27. The International BrachypodiumInitiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463: 763–768.

28. SongX, WangD, MaL, ChenZ, LiP, et al. (2012) Rice RNA-dependent RNA polymerase 6 acts in small RNA biogenesis and spikelet development. Plant J 71: 378–389.

29. NobutaK, LuC, ShrivastavaR, PillayM, De PaoliE, et al. (2008) Distinct size distribution of endogeneous siRNAs in maize: Evidence from deep sequencing in the mop1-1 mutant. Proc Natl Acad Sci USA 105: 14958–14963.

30. BarberW, ZhangW, WinH, VaralaK, DorweilerJ, et al. (2012) Repeat-associated small RNAs vary among parents and following hybridization in maize. Proc Natl Acad Sci USA 109: 10444–10449.

31. ZhaiJ, JeongD, De PaoliE, ParkS, RosenB, et al. (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25: 2540–2553.

32. BorsaniO, ZhuJ, VersluesP, SunkarR, ZhuJ (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123: 1279–1291.

33. Katiyar-AgarwalS, MorganR, DahlbeckD, BorsaniO, VillegasAJr, et al. (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci U S A 103: 18002–18007.

34. DunoyerP, BrosnanCA, SchottG, WangY, JayF, et al. (2010) An endogenous, systemic RNAi pathway in plants. EMBO J 29: 1699–1712.

35. GermanM, PillayM, JeongD, HetawalA, LuoS, et al. (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotech 26: 941–946.

36. ShivaprasadP, ChenH, PatelK, BondD, SantosB, et al. (2012) A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24: 859–874.

37. LiF, PignattaD, BendixC, BrunkardJO, CohnMM, et al. (2011) MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci U S A 109: 1790–1795.

38. MatsumotoT, PardoJ, TakedaS, BressanR, HasegawaP (2001) Tobacco and Arabidopsis SLT1 mediate salt tolerance of yeast. Plant Mol Biol 45: 489–500.

39. LeeS, AnG (2009) Overexpression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ 32: 408–416.

40. LeeS, KimS, LeeJ, GuerinotM, AnG (2010) http://www.ncbi.nlm.nih.gov/pubmed/20496122 Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Mol Cells. 29: 551–558.

41. WuG, ParkM, ConwayS, WangJ, WeigelD, et al. (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138: 750–759.

42. NogueiraF, ChitwoodD, MadiS, OhtsuK, SchnableP, et al. (2009) Regulation of small RNA accumulation in the maize shoot apex. PLoS Genet 5: e1000320.

43. GarciaD, GarciaS, PontierD, MarchaisA, RenouJP, et al. (2012) Ago hook and RNA helicase motifs underpin dual roles for SDE3 in antiviral defense and silencing of nonconserved intergenic regions. Mol Cell 48: 109–120.

44. NuthikattuS, McCueAD, PandaK, FultzD, DeFraiaC, et al. (2013) The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21-22 nucleotide small interfering RNAs. Plant Physiol 162: 116–131.

45. PontierD, PicartC, RoudierF, GarciaD, LahmyS, et al. (2012) NERD, a plant-specific GW protein, defines an additional RNAi-dependent chromatin-based pathway in Arabidopsis. Mol Cell 48: 121–132.

46. Marí-OrdóñezA, MarchaisA, EtcheverryM, MartinA, ColotV, et al. (2013) Reconstructing de novo silencing of an active plant retrotransposon. Nat Genet 45: 1029–1039.

47. LawJ, JacobsenS (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11: 204–220.

48. McCueAD, NuthikattuS, SlotkinRK (2013) Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs. RNA Biol 10: 1379–1395.

49. AusinI, MocklerT, ChoryJ, JacobsenS (2009) IDN1 and IDN2 are required for de novo DNA methylation in Arabidopsis thaliana. Nat Struct Mol Biol 16: 1325–1327.

50. XieM, RenG, Costa-NunesP, PontesO, YuB (2012) A subgroup of SGS3-like proteins act redundantly in RNA-directed DNA methylation. Nucleic Acids Res 40: 4422–4423.

51. FinkeA, KuhlmannM, MetteM (2012) IDN2 has a role downstream of siRNA formation in RNA-directed DNA methylation. Epigenetics 7: 950–960.

52. LiH, FreelingM, LischD (2010) Epigenetic reprogramming during vegetative phase change in maize. Proc Natl Acad Sci USA 107: 22184–22189.

53. LischD (2013) How important are transposons for plant evolution? Nat Rev Genet 4: 49–61.

54. GeiserM, WeckE, DöringHP, WerrW, Courage-TebbeU, et al. (1982) Genomic clones of a wild-type allele and a transposable element-induced mutant allele of the sucrose synthase gene of Zea mays L. EMBO J. 1: 1455–1460.

55. TimmermansM, SchultesN, JankovskyJP, NelsonT (1998) Leafbladeless1 is required for dorsoventrality of lateral organs in maize. Development 125: 2813–2823.

56. SongX, LiP, ZhaiJ, ZhouM, MaL, et al. (2012) Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. Plant J 69: 462–74.

57. XieZ, AllenE, WilkenA, CarringtonJ (2005) DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci U S A 102: 12984–12989.

58. VernouxT, BrunoudG, FarcotE, MorinV, Van den DaeleH, et al. (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7: 508.

59. KidnerC, TimmermansM (2007) Mixing and matching pathways in leaf polarity. Curr Opin Plant Biol 10: 13–20.

60. LangmeadB, TrapnellC, PopM, SalzbergS (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25.

61. Griffiths-JonesS, MoxonS, MarshallM, KhannaA, EddyS, et al. (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 33: D121–124.

62. McCormickK, WillmannM, MeyersB (2011) Experimental design, preprocessing, normalization and differential expression analysis of small RNA sequencing experiments. Silence 2: 2.

63. RobinsonMD, McCarthyDJ, SmythGK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140.

64. HochbergY, BenjaminiY (1990) More powerful procedures for multiple significance testing. Stat Med 9: 811–818.

65. De PaoliE, Dorantes-AcostaA, ZhaiJ, AccerbiM, JeongD, et al. (2009) Distinct extremely abundant siRNAs associated with cosuppression in Petunia. RNA 15: 1965–1970.

66. TrapnellC, RobertsA, GoffL, PerteaG, KimD, et al. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols 7: 562–578.

67. Javelle M, Marco C, Timmermans M (2011) In situ hybridization for the precise localization of transcripts in plants. J Vis Exp 57: e:3328.

68. LodhaM, MarcoC, TimermansM (2013) The ASYMMETRIC LEAVES complex maintains repression of KNOX homeobox genes via direct recruitment of Polycomb Repressive Complex2. Genes Dev 27: 596–601.

69. PfafflM (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#