-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
SEEDSTICK is a Master Regulator of Development and Metabolism in the Arabidopsis Seed Coat
Plant secondary metabolites accumulate in seeds to protect the developing embryo. Using an RNA sequencing approach in conjunction with enrichment analyses we identified the homeotic MADS-domain gene SEEDSTICK (STK) as a regulator of metabolic processes during seed development. We analyzed the role of STK as a key regulator of the production of proanthocyanidins, compounds which are important for the pigmentation of the seed. STK directly regulates a network of metabolic genes, and is also implicated in changes occurring in the chromatin landscape. Our work demonstrates that a key homeotic transcription factor not only determines the identity of ovules but also controls metabolic processes that occur subsequent to the initial identity determination process, thus suggesting a link between identity determination and cell-specific (metabolic) processes.
Vyšlo v časopise: SEEDSTICK is a Master Regulator of Development and Metabolism in the Arabidopsis Seed Coat. PLoS Genet 10(12): e32767. doi:10.1371/journal.pgen.1004856
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004856Souhrn
Plant secondary metabolites accumulate in seeds to protect the developing embryo. Using an RNA sequencing approach in conjunction with enrichment analyses we identified the homeotic MADS-domain gene SEEDSTICK (STK) as a regulator of metabolic processes during seed development. We analyzed the role of STK as a key regulator of the production of proanthocyanidins, compounds which are important for the pigmentation of the seed. STK directly regulates a network of metabolic genes, and is also implicated in changes occurring in the chromatin landscape. Our work demonstrates that a key homeotic transcription factor not only determines the identity of ovules but also controls metabolic processes that occur subsequent to the initial identity determination process, thus suggesting a link between identity determination and cell-specific (metabolic) processes.
Zdroje
1. HaughnG, ChaudhuryA (2005) Genetic analysis of seed coat development in Arabidopsis. Trends Plant Sci 10 : 472–477 doi:10.1016/j.tplants.2005.08.005
2. DebeaujonI, NesiN, PerezP, DevicM, GrandjeanO, et al. (2003) Proanthocyanidin-Accumulating Cells in Arabidopsis Testa: regulation of differentiation and role in seed development. Plant Cell 15 : 2514–2531 doi:10.1105/tpc.014043.1
3. KaufmannK, MuiñoJM, JaureguiR, AiroldiC, SmaczniakC, et al. (2009) Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol 7: e1000090 doi:10.1371/journal.pbio.1000090
4. GregisV, AndrésF, SessaA, GuerraRF, SimoniniS, et al. (2013) Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis. Genome biol 14: R56 doi:10.1186/gb-2013-14-6-r56
5. ColomboL, BattagliaR, KaterMM (2008) Arabidopsis ovule development and its evolutionary conservation. Trends Plant Sci 13 : 444–450 doi http://dx.doi.org/10.1016/j.tplants.2008.04.011.
6. FavaroR, PinyopichA, BattagliaR, KooikerM, BorghiL, et al. (2003) MADS-Box Protein Complexes Control Carpel and Ovule Development in Arabidopsis. Plant Cell 15 : 2603–2611 doi:10.1105/tpc.015123.2
7. PinyopichA, DittaGS, SavidgeB, LiljegrenSJ, BaumannE, et al. (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424 : 85–88 doi:10.1038/nature01741
8. BrambillaV, BattagliaR, ColomboM, MasieroS, BencivengaS, et al. (2007) Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. Plant Cell 19 : 2544–2556 doi:10.1105/tpc.107.051797
9. MizzottiC, MendesMA, CaporaliE, SchnittgerA, KaterMM, et al. (2012) The MADS box genes SEEDSTICK and ARABIDOPSIS Bsister play a maternal role in fertilization and seed development. Plant J 70 : 409–420 doi:10.1111/j.1365-313X.2011.04878.x
10. RoutaboulJ-M, KerhoasL, DebeaujonI, PourcelL, CabocheM, et al. (2006) Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta 224 : 96–107 doi:10.1007/s00425-005-0197-5
11. Winkel-ShirleyB (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126 : 485–493 doi:10.1104/pp.126.2.485
12. Winkel-ShirleyB (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5 : 218–223 doi:10.1016/S1369-5266(02)00256-X
13. BaisHP, VepacheduR, GilroyS, CallawayRM, VivancoJM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301 : 1377–1380 doi:10.1126/science.1083245
14. D'AuriaJC, GershenzonJ (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol 8 : 308–316 doi:10.1016/j.pbi.2005.03.012
15. KoesR, VerweijW, QuattrocchioF (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10 : 236–242 doi:10.1016/j.tplants.2005.03.002
16. LepiniecL, DebeaujonI, RoutaboulJ-M, BaudryA, PourcelL, et al. (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57 : 405–430 doi:10.1146/annurev.arplant.57.032905.105252
17. AbrahamsS, LeeE, WalkerAR, TannerGJ, LarkinPJ, et al. (2003) The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. Plant J 35 : 624–636 doi:10.1046/j.1365-313X.2003.01834.x
18. PelletierMK, BurbulisIE, Winkel-ShirleyB (1999) Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and end-products in Arabidopsis seedlings. Plant Mol Biol 40 : 45–54 doi:10.1023/A:1026414301100
19. XuW, GrainD, BobetS, Le GourrierecJ, ThéveninJ, et al. (2014) Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed. New phytol 202 : 132–144 doi:10.1111/nph.12620
20. DevicM, GuilleminotJ, DebeaujonI, BechtoldN, BensaudeE, et al. (1999) The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development. Plant J 19 : 387–398 doi:10.1046/j.1365-313X.1999.00529.x
21. KitamuraS, ShikazonoN, TanakaA (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J 37 : 104–114 doi:10.1046/j.1365-313X.2003.01943.x
22. BaxterIR, YoungJC, ArmstrongG, FosterN, BogenschutzN, et al. (2005) A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc Natl Acad Sci USA 102 : 2649–2654 doi:10.1073/pnas.0406377102
23. PourcelL, RoutaboulJ-M, KerhoasL, CabocheM, Loic Lepiniec, et al. (2005) TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell 17 : 2966–2980 doi:10.1105/tpc.105.035154.1
24. MarinovaK, PourcelL, WederB, SchwarzM, BarronD, et al. (2007) The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+ -antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell 19 : 2023–2038 doi:10.1105/tpc.106.046029
25. BaudryA, HeimMA, DubreucqB, CabocheM, WeisshaarB, et al. (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39 : 366–380 doi:10.1111/j.1365-313X.2004.02138.x
26. ZhaoL, GaoL, WangH, ChenX, WangY, et al. (2013) The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Funct Integr Genomics 13 : 75–98 doi:10.1007/s10142-012-0301-4
27. JohnsonCS, KolevskiB, SmythDR (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14 : 1359–1375 doi:10.1105/tpc.001404
28. NesiN, DebeaujonI, JondC, StewartAJ, JenkinsGI, et al. (2002) The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14 : 2463–2479 doi:10.1105/tpc.004127
29. SagasserM, LuG, HahlbrockK, WeisshaarB (2002) A. thaliana TRANSPARENT TESTA 1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes Dev 16 : 138–149 doi:10.1101/gad.212702
30. MadhaniHD, FinkGR (1998) The control of filamentous differentiation and virulence in fungi. Trends Cell Biol 8 : 348–353 doi:10.1016/S0962-8924(98)01298-7
31. GagianoM, BauerFF, PretoriusIS (2002) The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Res 2 : 433–470 doi:10.1111/j.1567-1364.2002.tb00114.x
32. BrachaAL, RamanathanA, HuangS, IngberDE, SchreiberSL (2010) Carbon metabolism-mediated myogenic differentiation. Nat Chem Biol 6 : 202–204 doi:10.1038/nchembio.301
33. McGrawTE, MittalV (2010) Stem cells: Metabolism regulates differentiation. Nat Chem Biol 6 : 176–177 doi:10.1038/nchembio.324
34. FolmesCDL, ParkS, TerzicA (2013) Lipid metabolism greases the stem cell engine. Cell Metab 17 : 153–155 doi:10.1016/j.cmet.2013.01.010
35. ShirakiN, ShirakiY, TsuyamaT, ObataF, MiuraM, et al. (2014) Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab 19 : 780–794 doi:10.1016/j.cmet.2014.03.017
36. MortazaviA, WilliamsBA, McCueK, SchaefferL, WoldB (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5 : 621–628 doi:10.1038/nmeth.1226
37. BaggerlyKA, DengL, MorrisJS, AldazCM (2003) Differential expression in SAGE: accounting for normal between-library variation. Bioinformatics 19 : 1477–1483 doi:10.1093/bioinformatics/btg173
38. DuZ, ZhouX, LingY, ZhangZ, SuZ (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38 : 64–70 doi:10.1093/nar/gkq310
39. DoughtyJ, AljabriM, ScottR (2014) Flavonoids and the regulation of seed size in Arabidopsis. Biochem Soc Trans 42 : 364–369 doi:10.1042/BST20140040
40. ZhangF, GonzalezA, ZhaoM, PayneCT, LloydA (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130 : 4859–4869 doi:10.1242/dev.00681
41. GonzalezA, MendenhallJ, HuoY, LloydA (2009) TTG1 complex MYBs, MYB5 and TT2, control outer seed coat differentiation. Dev Biol 325 : 412–421 doi:10.1016/j.ydbio.2008.10.005
42. LiSF, MillikenON, PhamH, SeyitR, NapoliR, et al. (2009) The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis. Plant Cell 21 : 72–89 doi:10.1105/tpc.108.063503
43. Matias-HernandezL, BattagliaR, GalbiatiF, RubesM, EichenbergerC, et al. (2010) VERDANDI is a direct target of the MADS domain ovule identity complex and affects embryo sac differentiation in Arabidopsis. Plant Cell 22 : 1702–1715 doi:10.1105/tpc.109.068627
44. RiechmannJL, MeyerowitzEM (1997) Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity. Mol Biol Cell 8 : 1243–1259.
45. WangZ, ZangC, RosenfeldJA, SchonesDE, BarskiA, et al. (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40 : 897–903 doi:10.1038/ng.154
46. AusínI, Alonso-BlancoC, Jarillo Ja, Ruiz-GarcíaL, Martínez-ZapaterJM (2004) Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat Genet 36 : 162–166 doi:10.1038/ng1295
47. BenhamedM, BertrandC, ServetC, ZhouD-X (2006) Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell 18 : 2893–2903 doi:10.1105/tpc.106.043489
48. NgDW, ChandrasekharanMB, HallTC (2006) Ordered histone modifications are associated with transcriptional poising and activation of the phaseolin promoter. Plant Cell 18 : 119–132 doi:10.1105/tpc.105.037010
49. ZhouJ, WangX, HeK, CharronJ-BF, Elling Aa, et al. (2010) Genome-wide profiling of histone H3 lysine 9 acetylation and dimethylation in Arabidopsis reveals correlation between multiple histone marks and gene expression. Plant Mol Biol 72 : 585–595 doi:10.1007/s11103-009-9594-7
50. De FolterS, Shchennikova AV, FrankenJ, BusscherM, BaskarR, et al. (2006) A Bsister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis. Plant J 47 : 934–946 doi:10.1111/j.1365-313X.2006.02846.x
51. LiS, ZhouX, ChenL, HuangW, YuD (2010) Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol Cell 29 : 475–483 doi:10.1007/s10059-010-0059-2
52. ChiY, YangY, ZhouY, ZhouJ, FanB, et al. (2013) Protein-protein interactions in the regulation of WRKY transcription factors. Mol Plant 6 : 287–300 Available: http://www.ncbi.nlm.nih.gov/pubmed/23455420.
53. GaoJ, ZhuY, ZhouW, MolinierJ, DongA, et al. (2012) NAP1 family histone chaperones are required for somatic homologous recombination in Arabidopsis. Plant Cell 24 : 1437–1447 doi:10.1105/tpc.112.096792
54. KimH, ParkH, KimK, JungM, HanH, et al. (2012) A NAC transcription factor and SNI1 cooperatively suppress basal pathogen resistance in Arabidopsis thaliana. Nucleic Acids Res 40 : 9182–9192 doi:10.1093/nar/gks683
55. ShikataM, KoyamaT, MitsudaN, Ohme-TakagiM (2009) Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant Cell Physiol 50 : 2133–2145 doi:10.1093/pcp/pcp148
56. NesiN, JondC, DebeaujonI, CabocheM, LepiniecL (2001) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13 : 2099–2114.
57. DeanG, CaoY, XiangD, ProvartNJ, RamsayL, et al. (2011) Analysis of gene expression patterns during seed coat development in Arabidopsis. Mol Plant 4 : 1074–1091 doi:10.1093/mp/ssr040
58. KhanD, ChanA, MillarJL, GirardIJ, BelmonteMF (2014) Plant Science Predicting transcriptional circuitry underlying seed coat development. Plant science 223 : 146–152 doi:10.1016/j.plantsci.2014.03.016
59. Dixon Ra, XieD-Y, SharmaSB (2005) Proanthocyanidins–a final frontier in flavonoid research? New phytol 165 : 9–28 doi:10.1111/j.1469-8137.2004.01217.x
60. ArdiR, KobilerI, JacobyB, KeenNT, PruskyD (1998) Involvement of epicatechin biosynthesis in the activation of the mechanism of resistance of avocado fruits to Colletotrichum gloeosporioides. Physiol Mol Plant Pathol 53 : 269–285 doi:10.1006/pmpp.1998.0181
61. DebeaujonI, Léon-KloosterzielKM, KoornneefM (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol 122 : 403–414 doi:10.1104/pp.122.2.403
62. HanhinevaK, RogachevI, KokkoH, Mintz-OronS, VengerI, et al. (2008) Non-targeted analysis of spatial metabolite composition in strawberry (Fragaria X ananassa) flowers. Phytochemistry 69 : 2463–2481 doi:10.1016/j.phytochem.2008.07.009
63. Mintz-OronS, MandelT, RogachevI, FeldbergL, LotanO, et al. (2008) Gene expression and metabolism in tomato fruit surface tissues. Plant Physiol 147 : 823–851 doi:10.1104/pp.108.116004
64. AdatoA, MandelT, Mintz-OronS, VengerI, LevyD, et al. (2009) Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genet 5: e1000777 doi:10.1371/journal.pgen.1000777
65. KitamuraS, MatsudaF, TohgeT, Yonekura-SakakibaraK, YamazakiM, et al. (2010) Metabolic profiling and cytological analysis of proanthocyanidins in immature seeds of Arabidopsis thaliana flavonoid accumulation mutants. Plant J 62 : 549–559 doi:10.1111/j.1365-313X.2010.04174.x
66. ItkinM, RogachevI, AlkanN, RosenbergT, MalitskyS, et al. (2011) GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Plant Cell 23 : 4507–4525 doi: 10.1105/tpc.111.088732
67. AmbroseBA, LernerDR, CiceriP, PadillaCM, YanofskyMF, et al. (2000) Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell 5 : 569–579 doi:10.1016/S1097-2765(00)80450-5
68. GregisV, SessaA, ColomboL, KaterMM (2008) AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis. Plant J 56 : 891–902 doi:10.1111/j.1365-313X.2008.03648.x
69. VerwoerdT, DekkerB, HoekemaA (1989) A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res 17 : 2362.
70. HongSM, BahnSC, LyuA, JungHS, AhnJH (2010) Identification and testing of superior reference genes for a starting pool of transcript normalization in Arabidopsis. Plant Cell Physiol 51 : 1694–1706 doi:10.1093/pcp/pcq128
Štítky
Genetika Reprodukčná medicína
Článek Large-scale Metabolomic Profiling Identifies Novel Biomarkers for Incident Coronary Heart DiseaseČlánek Notch Signaling Mediates the Age-Associated Decrease in Adhesion of Germline Stem Cells to the NicheČlánek Phosphorylation of Mitochondrial Polyubiquitin by PINK1 Promotes Parkin Mitochondrial TetheringČlánek Natural Variation Is Associated With Genome-Wide Methylation Changes and Temperature SeasonalityČlánek Overlapping and Non-overlapping Functions of Condensins I and II in Neural Stem Cell DivisionsČlánek Unisexual Reproduction Drives Meiotic Recombination and Phenotypic and Karyotypic Plasticity inČlánek Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration inČlánek ABA-Mediated ROS in Mitochondria Regulate Root Meristem Activity by Controlling Expression inČlánek Mutations in Global Regulators Lead to Metabolic Selection during Adaptation to Complex EnvironmentsČlánek The Evolution of Sex Ratio Distorter Suppression Affects a 25 cM Genomic Region in the Butterfly
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2014 Číslo 12- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- Stratification by Smoking Status Reveals an Association of Genotype with Body Mass Index in Never Smokers
- Genome Wide Meta-analysis Highlights the Role of Genetic Variation in in the Regulation of Circulating Serum Chemerin
- Occupancy of Mitochondrial Single-Stranded DNA Binding Protein Supports the Strand Displacement Mode of DNA Replication
- Distinct Genealogies for Plasmids and Chromosome
- Large-scale Metabolomic Profiling Identifies Novel Biomarkers for Incident Coronary Heart Disease
- Non-coding RNAs Prevent the Binding of the MSL-complex to Heterochromatic Regions
- Plasmid Flux in ST131 Sublineages, Analyzed by Plasmid Constellation Network (PLACNET), a New Method for Plasmid Reconstruction from Whole Genome Sequences
- Epigenome-Guided Analysis of the Transcriptome of Plaque Macrophages during Atherosclerosis Regression Reveals Activation of the Wnt Signaling Pathway
- The Inventiveness of Nature: An Interview with Werner Arber
- Mediation Analysis Demonstrates That -eQTLs Are Often Explained by -Mediation: A Genome-Wide Analysis among 1,800 South Asians
- Generation of Antigenic Diversity in by Structured Rearrangement of Genes During Mitosis
- A Massively Parallel Pipeline to Clone DNA Variants and Examine Molecular Phenotypes of Human Disease Mutations
- Genetic Analysis of the Cardiac Methylome at Single Nucleotide Resolution in a Model of Human Cardiovascular Disease
- Genetic Analysis of Circadian Responses to Low Frequency Electromagnetic Fields in
- The Dissection of Meiotic Chromosome Movement in Mice Using an Electroporation Technique
- Altered Chromatin Occupancy of Master Regulators Underlies Evolutionary Divergence in the Transcriptional Landscape of Erythroid Differentiation
- Syd/JIP3 and JNK Signaling Are Required for Myonuclear Positioning and Muscle Function
- Notch Signaling Mediates the Age-Associated Decrease in Adhesion of Germline Stem Cells to the Niche
- Mutation of Leads to Blurred Tonotopic Organization of Central Auditory Circuits in Mice
- The IKAROS Interaction with a Complex Including Chromatin Remodeling and Transcription Elongation Activities Is Required for Hematopoiesis
- RAN-Binding Protein 9 is Involved in Alternative Splicing and is Critical for Male Germ Cell Development and Male Fertility
- Enhanced Longevity by Ibuprofen, Conserved in Multiple Species, Occurs in Yeast through Inhibition of Tryptophan Import
- Phosphorylation of Mitochondrial Polyubiquitin by PINK1 Promotes Parkin Mitochondrial Tethering
- Recurrent Loss of Specific Introns during Angiosperm Evolution
- Natural Variation Is Associated With Genome-Wide Methylation Changes and Temperature Seasonality
- SEEDSTICK is a Master Regulator of Development and Metabolism in the Arabidopsis Seed Coat
- Overlapping and Non-overlapping Functions of Condensins I and II in Neural Stem Cell Divisions
- Unisexual Reproduction Drives Meiotic Recombination and Phenotypic and Karyotypic Plasticity in
- Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in
- ABA-Mediated ROS in Mitochondria Regulate Root Meristem Activity by Controlling Expression in
- Mutations in Global Regulators Lead to Metabolic Selection during Adaptation to Complex Environments
- Global Analysis of Photosynthesis Transcriptional Regulatory Networks
- Mucolipin Co-deficiency Causes Accelerated Endolysosomal Vacuolation of Enterocytes and Failure-to-Thrive from Birth to Weaning
- Controlling Pre-leukemic Thymocyte Self-Renewal
- How Malaria Parasites Avoid Running Out of Ammo
- Echoes of the Past: Hereditarianism and
- Deep Reads: Strands in the History of Molecular Genetics
- Keep on Laying Eggs Mama, RNAi My Reproductive Aging Blues Away
- Analysis of a Plant Complex Resistance Gene Locus Underlying Immune-Related Hybrid Incompatibility and Its Occurrence in Nature
- Epistatic Adaptive Evolution of Human Color Vision
- Increased and Imbalanced dNTP Pools Symmetrically Promote Both Leading and Lagging Strand Replication Infidelity
- Genetic Basis of Haloperidol Resistance in Is Complex and Dose Dependent
- Genome-Wide Analysis of DNA Methylation Dynamics during Early Human Development
- Interaction between Conjugative and Retrotransposable Elements in Horizontal Gene Transfer
- The Evolution of Sex Ratio Distorter Suppression Affects a 25 cM Genomic Region in the Butterfly
- is Required for Adult Maintenance of Dopaminergic Neurons in the Ventral Substantia Nigra
- PRL1, an RNA-Binding Protein, Positively Regulates the Accumulation of miRNAs and siRNAs in Arabidopsis
- Genetic Control of Contagious Asexuality in the Pea Aphid
- Early Mesozoic Coexistence of Amniotes and Hepadnaviridae
- Local and Systemic Regulation of Plant Root System Architecture and Symbiotic Nodulation by a Receptor-Like Kinase
- Gene Pathways That Delay Reproductive Senescence
- The Evolution of Fungal Metabolic Pathways
- Maf1 Is a Novel Target of PTEN and PI3K Signaling That Negatively Regulates Oncogenesis and Lipid Metabolism
- Formation of Linear Amplicons with Inverted Duplications in Requires the MRE11 Nuclease
- Identification of Rare Causal Variants in Sequence-Based Studies: Methods and Applications to , a Gene Involved in Cohen Syndrome and Autism
- Rrp12 and the Exportin Crm1 Participate in Late Assembly Events in the Nucleolus during 40S Ribosomal Subunit Biogenesis
- The Mutations in the ATP-Binding Groove of the Rad3/XPD Helicase Lead to -Cockayne Syndrome-Like Phenotypes
- Topoisomerase I Plays a Critical Role in Suppressing Genome Instability at a Highly Transcribed G-Quadruplex-Forming Sequence
- A Cbx8-Containing Polycomb Complex Facilitates the Transition to Gene Activation during ES Cell Differentiation
- Transcriptional Frameshifting Rescues Type VI Secretion by the Production of Two Length Variants from the Prematurely Interrupted Gene
- Association Mapping across Numerous Traits Reveals Patterns of Functional Variation in Maize
- Genome-Wide Analysis of -Regulated and Phased Small RNAs Underscores the Importance of the ta-siRNA Pathway to Maize Development
- Dissemination of Cephalosporin Resistance Genes between Strains from Farm Animals and Humans by Specific Plasmid Lineages
- The Tau Tubulin Kinases TTBK1/2 Promote Accumulation of Pathological TDP-43
- Germline Signals Deploy NHR-49 to Modulate Fatty-Acid β-Oxidation and Desaturation in Somatic Tissues of
- Microevolution of in Macrophages Restores Filamentation in a Nonfilamentous Mutant
- Vangl2-Regulated Polarisation of Second Heart Field-Derived Cells Is Required for Outflow Tract Lengthening during Cardiac Development
- Chondrocytes Transdifferentiate into Osteoblasts in Endochondral Bone during Development, Postnatal Growth and Fracture Healing in Mice
- A ABC Transporter Regulates Lifespan
- RA and FGF Signalling Are Required in the Zebrafish Otic Vesicle to Pattern and Maintain Ventral Otic Identities
- , and Reprogram Thymocytes into Self-Renewing Cells
- The miR9863 Family Regulates Distinct Alleles in Barley to Attenuate NLR Receptor-Triggered Disease Resistance and Cell-Death Signaling
- Detection of Pleiotropy through a Phenome-Wide Association Study (PheWAS) of Epidemiologic Data as Part of the Environmental Architecture for Genes Linked to Environment (EAGLE) Study
- Extensive Copy-Number Variation of Young Genes across Stickleback Populations
- The and Genetic Modules Interact to Regulate Ciliogenesis and Ciliary Microtubule Patterning in
- Analysis of the Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in
- Maf1 Is a Novel Target of PTEN and PI3K Signaling That Negatively Regulates Oncogenesis and Lipid Metabolism
- The IKAROS Interaction with a Complex Including Chromatin Remodeling and Transcription Elongation Activities Is Required for Hematopoiesis
- Echoes of the Past: Hereditarianism and
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy