-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
The Evolution of Fungal Metabolic Pathways
Fungi are important primary decomposers of organic material as well as amazing chemical engineers, synthesizing a wide variety of natural products, some with potent toxic activities, including antibiotics and mycotoxins. In fungal genomes, the genes involved in these metabolic pathways can be physically linked on chromosomes, forming gene clusters. This extraordinary metabolic diversity is integral to the variety of ecological strategies that fungi employ, but we still know little about the evolutionary processes involved in its generation. To address this question, we analyzed 247,202 enzyme-encoding genes participating in hundreds of metabolic reactions from 208 diverse fungal genomes to examine how two major sources of gene innovation, namely gene duplication and horizontal gene transfer, have contributed to the evolution of clustered and non-clustered metabolic pathways. We discovered that gene duplication is the dominant and consistent driver of metabolic innovation across fungal lineages and metabolic categories; in contrast, horizontal gene transfer appears highly variable both across organisms and functions. The effects of both gene duplication and horizontal gene transfer were more pronounced in clustered genes than in their non-clustered counterparts suggesting that metabolic gene clusters are hotspots for the generation of fungal metabolic diversity.
Vyšlo v časopise: The Evolution of Fungal Metabolic Pathways. PLoS Genet 10(12): e32767. doi:10.1371/journal.pgen.1004816
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004816Souhrn
Fungi are important primary decomposers of organic material as well as amazing chemical engineers, synthesizing a wide variety of natural products, some with potent toxic activities, including antibiotics and mycotoxins. In fungal genomes, the genes involved in these metabolic pathways can be physically linked on chromosomes, forming gene clusters. This extraordinary metabolic diversity is integral to the variety of ecological strategies that fungi employ, but we still know little about the evolutionary processes involved in its generation. To address this question, we analyzed 247,202 enzyme-encoding genes participating in hundreds of metabolic reactions from 208 diverse fungal genomes to examine how two major sources of gene innovation, namely gene duplication and horizontal gene transfer, have contributed to the evolution of clustered and non-clustered metabolic pathways. We discovered that gene duplication is the dominant and consistent driver of metabolic innovation across fungal lineages and metabolic categories; in contrast, horizontal gene transfer appears highly variable both across organisms and functions. The effects of both gene duplication and horizontal gene transfer were more pronounced in clustered genes than in their non-clustered counterparts suggesting that metabolic gene clusters are hotspots for the generation of fungal metabolic diversity.
Zdroje
1. WainwrightM (1988) Metabolic diversity of fungi in relation to growth and mineral cycling in soil - a review. Trans Br Mycol Soc 90 : 159–170.
2. BouwsH, WattenbergA, ZornH (2008) Fungal secretomes-nature's toolbox for white biotechnology. Appl Microbiol Biotechnol 80 : 381–388 doi:10.1007/s00253-008-1572-5
3. HoffmeisterD, KellerN (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24 : 393–416 doi:10.1039/b603084j
4. SchardlCL, YoungCA, HesseU, AmyotteSG, AndreevaK, et al. (2013) Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the Clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet 9: e1003323 doi:10.1371/journal.pgen.1003323.s012
5. DufosséL, FouillaudM, CaroY, MapariSA, SutthiwongN (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol 26C: 56–61 doi:10.1016/j.copbio.2013.09.007
6. KohlhawGB (2003) Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol Mol Biol Rev 67 : 1 doi:10.1128/MMBR.67.1.1-15.2003
7. DemainAL, FangA (2000) The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69 : 1–39.
8. KellerN, TurnerG, BennettJ (2005) Fungal secondary metabolism-from biochemistry to genomics. Nat Rev Microbiol 3 : 937–947 doi:10.1038/nrmicro1286
9. KooninEV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1 : 127–136 doi:10.1038/nrmicro751
10. KanehisaM, ArakiM, GotoS, HattoriM, HirakawaM, et al. (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36: D480–D484 doi:10.1093/nar/gkm882
11. GreeneGH, McGaryKL, RokasA, SlotJC (2014) Ecology drives the distribution of specialized tyrosine metabolism modules in fungi. Genome Biol Evol 6 : 121–132 doi:10.1093/gbe/evt208
12. HallC, DietrichFS (2007) The reacquisition of biotin prototrophy in Saccharomyces cerevisiae involved horizontal gene transfer, gene duplication and gene clustering. Genetics 177 : 2293–2307 doi:10.1534/genetics.107.074963
13. KellerN, HohnT (1997) Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 21 : 17–29.
14. HollandPWH (2013) Evolution of homeobox genes. Wiley Interdiscip Rev Dev Biol 2 : 31–45 doi:10.1002/wdev.78
15. IrimiaM, MaesoI, Garcia-FernàndezJ (2008) Convergent evolution of clustering of Iroquois homeobox genes across metazoans. Mol Biol Evol 25 : 1521–1525 doi:10.1093/molbev/msn109
16. JargeatP, RekangaltD, VernerM, GayG, DebaudJ, et al. (2003) Characterisation and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum. Current Genetics 43 : 199–205 doi:10.1007/s00294-003-0387-2
17. WongS, WolfeKH (2005) Birth of a metabolic gene cluster in yeast by adaptive gene relocation. Nat Genet 37 : 777–782 doi:10.1038/ng1584
18. HittingerCT, RokasA, CarrollSB (2004) Parallel inactivation of multiple GAL pathway genes and ecological diversification in yeasts. Proc Natl Acad Sci U S A 101 : 14144–14149 doi:10.1073/pnas.0404319101
19. HullEP, GreenPM, ArstHN, ScazzocchioC (1989) Cloning and physical characterization of the L-proline catabolism gene cluster of Aspergillus nidulans. Mol Microbiol 3 : 553–559.
20. BobrowiczP, WysockiR, OwsianikG, GoffeauA, UlaszewskiS (1997) Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast 13 : 819–828.
21. SubaziniTK, KumarGR (2011) Characterization of Lovastatin biosynthetic cluster proteins in Aspergillus terreus strain ATCC 20542. Bioinformation 6 : 250–254.
22. BushleyKE, RajaR, JaiswalP, CumbieJS, NonogakiM, et al. (2013) The genome of Tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster. PLoS Genet 9: e1003496 doi:10.1371/journal.pgen.1003496
23. GardinerDM, CozijnsenAJ, WilsonLM, PedrasMSC, HowlettBJ (2004) The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans. Mol Microbiol 53 : 1307–1318 doi:10.1111/j.1365-2958.2004.04215.x
24. YuJ, ChangPK, EhrlichKC, CaryJW, BhatnagarD, et al. (2004) Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70 : 1253 doi:10.1128/AEM.70.3.1253-1262.2004
25. TudzynskiP, HölterK, CorreiaT, ArntzC, GrammelN, et al. (1999) Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol Gen Genet 261 : 133–141.
26. AhnJ-H, ChengY-Q, WaltonJD (2002) An extended physical map of the TOX2 locus of Cochliobolus carbonum required for biosynthesis of HC-toxin. Fungal Genet Biol 35 : 31–38 doi:10.1006/fgbi.2001.1305
27. BrownDW, McCormickSP, AlexanderNJ, ProctorRH, DesjardinsAE (2001) A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal Genet Biol 32 : 121–133 doi:10.1006/fgbi.2001.1256
28. SmithDJ, BurnhapMK, BullJH, HodgsonJE, WardJM, et al. (1990) Beta-lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes. Embo J 9 : 741–747.
29. HittingerCT, CarrollSB (2007) Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449 : 677–U1 doi:10.1038/nature06151
30. FloudasD, BinderM, RileyR, BarryK, BlanchetteRA, et al. (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336 : 1715–1719 doi:10.1126/science.1221748
31. PowellAJ, ConantGC, BrownDE, CarboneI, DeanRA (2008) Altered patterns of gene duplication and differential gene gain and loss in fungal pathogens. BMC Genomics 9 : 147 doi:10.1186/1471-2164-9-147
32. MaL-J, IbrahimAS, SkoryC, GrabherrMG, BurgerG, et al. (2009) Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet 5: e1000549 doi:10.1371/journal.pgen.1000549
33. KellisM, BirrenBW, LanderES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428 : 617–624 doi:10.1038/nature02424
34. WolfeK (2004) Evolutionary genomics: Yeasts accelerate beyond BLAST. Curr Biol 14: R392–R394 doi:10.1016/j.cub.2004.05.015
35. WapinskiI, PfefferA, FriedmanN, RegevA (2007) Natural history and evolutionary principles of gene duplication in fungi. Nature 449 : 54–61 doi:10.1038/nature06107
36. CornellMJ, AlamI, SoanesDM, WongHM, HedelerC, et al. (2007) Comparative genome analysis across a kingdom of eukaryotic organisms: Specialization and diversification in the Fungi. Genome Res 17 : 1809–1822 doi:10.1101/gr.6531807
37. HunterAJ, JinB, KellyJM (2011) Independent duplications of alpha-amylase in different strains of Aspergillus oryzae. Fungal Genet Biol 48 : 438–444 doi:10.1016/j.fgb.2011.01.006
38. XuJ, SaundersCW, HuP, GrantRA, BoekhoutT, et al. (2007) Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci U S A 104 : 18730–18735 doi:10.1073/pnas.0706756104
39. JonesonS, StajichJE, ShiuS-H, RosenblumEB (2011) Genomic transition to pathogenicity in chytrid fungi. PLoS Pathog 7: e1002338 doi:10.1371/journal.ppat.1002338
40. LeagueGP, SlotJC, RokasA (2012) The ASP3 locus in Saccharomyces cerevisiae originated by horizontal gene transfer from Wickerhamomyces. FEMS Yeast Research 12 : 859–863 doi:10.1111/j.1567-1364.2012.00828.x
41. HallC, BrachatS, DietrichFS (2005) Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryotic Cell 4 : 1102–1115 doi:10.1128/EC.4.6.1102-1115.2005
42. RichardsTA, SoanesDM, FosterPG, LeonardG, ThomtonCR, et al. (2009) Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi. Plant Cell 21 : 1897–1911 doi:10.1105/tpc.109.065805
43. Marcet-HoubenM, GabaldonT (2010) Acquisition of prokaryotic genes by fungal genomes. Trends Genet 26 : 5–8 doi:10.1016/j.tig.2009.11.007
44. RichardsTA, DacksJB, JenkinsonJM, ThorntonCR, TalbotNJ (2006) Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms. Curr Biol 16 : 1857–1864 doi:10.1016/j.cub.2006.07.052
45. GardinerDM, McDonaldMC, CovarelliL, SolomonPS, RusuAG, et al. (2012) Comparative pathogenomics reveals horizontally acquired novel virulence genes in fungi infecting cereal hosts. PLoS Pathog 8: e1002952 doi:10.1371/journal.ppat.1002952
46. TiburcioRA, Lacerda CostaGG, CarazzolleMF, Costa MondegoJM, SchusterSC, et al. (2010) Genes acquired by horizontal transfer are potentially involved in the evolution of phytopathogenicity in Moniliophthora perniciosa and Moniliophthora roreri, two of the major pathogens of cacao. J Mol Evol 70 : 85–97 doi:10.1007/s00239-009-9311-9
47. FriesenTL, StukenbrockEH, LiuZ, MeinhardtS, LingH, et al. (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38 : 953–956 doi:10.1038/ng1839
48. SunB-F, XiaoJ-H, HeS, LiuL, MurphyRW, et al. (2013) Multiple interkingdom horizontal gene transfers in Pyrenophora and closely related species and their contributions to phytopathogenic lifestyles. PLoS ONE 8: e60029 doi:10.1371/journal.pone.0060029
49. Garcia-VallveS, RomeuA, PalauJ (2000) Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol Biol Evol 17 : 352–361.
50. NovoM, BigeyF, BeyneE, GaleoteV, GavoryF, et al. (2009) Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci U S A 106 : 16333–16338 doi:10.1073/pnas.0904673106
51. KhaldiN, CollemareJ, LebrunM (2008) Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi. Genome Biol 9: R18.
52. SlotJC, HibbettDS (2007) Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: a phylogenetic study. PLoS ONE 2: e1097 doi:10.1371/journal.pone.0001097
53. SlotJC, RokasA (2010) Multiple GAL pathway gene clusters evolved independently and by different mechanisms in fungi. Proc Natl Acad Sci U S A 107 : 10136–10141 doi:10.1073/pnas.0914418107
54. SlotJC, RokasA (2011) Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Curr Biol 21 : 134–139 doi:10.1016/j.cub.2010.12.020
55. CampbellMA, RokasA, SlotJC (2012) Horizontal transfer and death of a fungal secondary metabolic gene cluster. Genome Biol Evol 4 : 289–293 doi:10.1093/gbe/evs011
56. CampbellMA, StaatsM, van KanJAL, RokasA, SlotJC (2013) Repeated loss of an anciently horizontally transferred gene cluster in Botrytis. Mycologia 105 : 1126–1134 doi:10.3852/12-390
57. PatronNJ, WallerRF, CozijnsenAJ, StraneyDC, GardinerDM, et al. (2007) Origin and distribution of epipolythiodioxopiperazine (ETP) gene clusters in filamentous ascomycetes. BMC Evol Biol 7 : 174 doi:10.1186/1471-2148-7-174
58. KhaldiN, WolfeKH (2011) Evolutionary origins of the fumonisin secondary metabolite gene cluster in Fusarium verticillioides and Aspergillus niger. Int J Evol Biol 2011 : 423821–423827 doi:10.4061/2011/423821
59. DurandD, HalldórssonBV, VernotB (2006) A hybrid micro-macroevolutionary approach to gene tree reconstruction. J Comput Biol 13 : 320–335 doi:10.1089/cmb.2006.13.320
60. StolzerM, LaiH, XuM, SathayeD, VernotB, et al. (2012) Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinformatics 28: I409–I415 doi:10.1093/bioinformatics/bts386
61. VernotB, StolzerM, GoldmanA, DurandD (2007) Reconciliation with non-binary species trees. Comput Syst Bioinformatics Conf 6 : 441–452.
62. WolfeKH, ShieldsDC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387 : 708–713 doi:10.1038/42711
63. ViningLC (1992) Secondary metabolism, inventive evolution and biochemical diversity-a review. Gene 115 : 135–140.
64. TrappSC, CroteauRB (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158 : 811–832.
65. HopwoodDA (1997) Genetic contributions to understanding polyketide synthases. Chemical reviews 97 : 2465–2498 doi:10.1021/cr960034i
66. KrokenS, GlassN, TaylorJ, YoderO, TurgeonB (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci U S A 100 : 15670–15675 doi:10.1073/pnas.2532165100
67. BushleyKE, TurgeonBG (2010) Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol Biol 10 : 26 doi:10.1186/1471-2148-10-26
68. CondonBJ, LengY, WuD, BushleyKE, OhmRA, et al. (2013) Comparative genome structure, secondary metabolite, and effector coding capacity across Cochliobolus pathogens. PLoS Genet 9: e1003233 doi:10.1371/journal.pgen.1003233
69. MaL-J, van der DoesHC, BorkovichKA, ColemanJJ, DaboussiM-J, et al. (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464 : 367–373 doi:10.1038/nature08850
70. ColemanJJ, RounsleySD, Rodriguez-CarresM, KuoA, WasmannCC, et al. (2009) The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet 5: e1000618 doi:10.1371/journal.pgen.1000618
71. de JongeR, van EsseHP, MaruthachalamK, BoltonMD, SanthanamP, et al. (2012) Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proc Natl Acad Sci U S A 109 : 5110–5115 doi:10.1073/pnas.1119623109
72. LiangH, PlazonicKR, ChenJ, LiW-H, FernándezA (2008) Protein under-wrapping causes dosage sensitivity and decreases gene duplicability. PLoS Genet 4: e11 doi:10.1371/journal.pgen.0040011
73. SorekR, ZhuY, CreeveyCJ, FrancinoMP, BorkP (2007) Genome-Wide Experimental Determination of Barriers to Horizontal Gene Transfer. Science 318 : 1449–1452.
74. PappB, PalC, HurstLD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424 : 194–197 doi:10.1038/nature01771
75. LiL, HuangY, XiaX, SunZ (2006) Preferential duplication in the sparse part of yeast protein interaction network. Mol Biol Evol 23 : 2467–2473 doi:10.1093/molbev/msl121
76. PrachumwatA, LiW-H (2006) Protein function, connectivity, and duplicability in yeast. Mol Biol Evol 23 : 30–39 doi:10.1093/molbev/msi249
77. CohenO, GophnaU, PupkoT (2011) The complexity hypothesis revisited: connectivity rather than function constitutes a barrier to horizontal gene transfer. Mol Biol Evol 28 : 1481–1489 doi:10.1093/molbev/msq333
78. JainR, RiveraMC, LakeJA (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci U S A 96 : 3801–3806.
79. HurstLD, WilliamsE, PalC (2002) Natural selection promotes the conservation of linkage of co-expressed genes. Trends Genet 18 : 604–606.
80. TakosAM, RookF (2012) Why biosynthetic genes for chemical defense compounds cluster. Trends Plant Sci 17 : 383–388 doi:10.1016/j.tplants.2012.04.004
81. McGaryKL, SlotJC, RokasA (2013) Physical linkage of metabolic genes in fungi is an adaptation against the accumulation of toxic intermediate compounds. Proc Natl Acad Sci U S A 110 : 11481–11486 doi:10.1073/pnas.1304461110
82. HittingerCT, GonçalvesP, SampaioJP, DoverJ, JohnstonM, et al. (2010) Remarkably ancient balanced polymorphisms in a multi-locus gene network. Nature 464 : 54–58 doi:10.1038/nature08791
83. LangGI, BotsteinD (2011) A test of the coordinated expression hypothesis for the origin and maintenance of the GAL cluster in yeast. PLoS ONE 6: e25290 doi:10.1371/journal.pone.0025290
84. WaltonJD (2000) Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal Genet Biol 30 : 167–171 doi:10.1006/fgbi.2000.1224
85. LawrenceJG, RothJR (1996) Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143 : 1843–1860.
86. KatohK, KumaK, TohH, MiyataT (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33 : 511–518 doi:10.1093/nar/gki198
87. Capella-GutierrezS, Silla-MartinezJM, GabaldonT (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25 : 1972–1973 doi:10.1093/bioinformatics/btp348
88. StamatakisA (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22 : 2688–2690 doi: 10.1093/bioinformatics/btl446
89. Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Available: http://evolution.genetics.washington.edu/phylip.html.
90. PriceMN, DehalPS, ArkinAP (2010) Fasttree 2 - approximately maximum-likelihood trees for large alignments. PLoS ONE 5: e9490 doi:10.1371/journal.pone.0009490
91. ChenK, DurandD, Farach-ColtonM (2000) NOTUNG: A program for dating gene duplications and optimizing gene family trees. J Comput Biol 7 : 429–447 doi:10.1089/106652700750050871
92. R Code Team (2014) R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing. Available: http://www.R-project.org/.
93. BenjaminiY, HochbergY (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc, Series B 57 : 289–300.
94. Wickham H (2009) ggplot2: elegant graphics for data analysis. New York: Springer.
95. YamadaT, LetunicI, OkudaS, KanehisaM, BorkP (2011) iPath2.0: interactive pathway explorer. Nucleic Acids Res 39: W412–W415 doi:10.1093/nar/gkr313
Štítky
Genetika Reprodukčná medicína
Článek Large-scale Metabolomic Profiling Identifies Novel Biomarkers for Incident Coronary Heart DiseaseČlánek Notch Signaling Mediates the Age-Associated Decrease in Adhesion of Germline Stem Cells to the NicheČlánek Phosphorylation of Mitochondrial Polyubiquitin by PINK1 Promotes Parkin Mitochondrial TetheringČlánek Natural Variation Is Associated With Genome-Wide Methylation Changes and Temperature SeasonalityČlánek Overlapping and Non-overlapping Functions of Condensins I and II in Neural Stem Cell DivisionsČlánek Unisexual Reproduction Drives Meiotic Recombination and Phenotypic and Karyotypic Plasticity inČlánek Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration inČlánek ABA-Mediated ROS in Mitochondria Regulate Root Meristem Activity by Controlling Expression inČlánek Mutations in Global Regulators Lead to Metabolic Selection during Adaptation to Complex EnvironmentsČlánek The Evolution of Sex Ratio Distorter Suppression Affects a 25 cM Genomic Region in the Butterfly
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2014 Číslo 12- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- Stratification by Smoking Status Reveals an Association of Genotype with Body Mass Index in Never Smokers
- Genome Wide Meta-analysis Highlights the Role of Genetic Variation in in the Regulation of Circulating Serum Chemerin
- Occupancy of Mitochondrial Single-Stranded DNA Binding Protein Supports the Strand Displacement Mode of DNA Replication
- Distinct Genealogies for Plasmids and Chromosome
- Large-scale Metabolomic Profiling Identifies Novel Biomarkers for Incident Coronary Heart Disease
- Non-coding RNAs Prevent the Binding of the MSL-complex to Heterochromatic Regions
- Plasmid Flux in ST131 Sublineages, Analyzed by Plasmid Constellation Network (PLACNET), a New Method for Plasmid Reconstruction from Whole Genome Sequences
- Epigenome-Guided Analysis of the Transcriptome of Plaque Macrophages during Atherosclerosis Regression Reveals Activation of the Wnt Signaling Pathway
- The Inventiveness of Nature: An Interview with Werner Arber
- Mediation Analysis Demonstrates That -eQTLs Are Often Explained by -Mediation: A Genome-Wide Analysis among 1,800 South Asians
- Generation of Antigenic Diversity in by Structured Rearrangement of Genes During Mitosis
- A Massively Parallel Pipeline to Clone DNA Variants and Examine Molecular Phenotypes of Human Disease Mutations
- Genetic Analysis of the Cardiac Methylome at Single Nucleotide Resolution in a Model of Human Cardiovascular Disease
- Genetic Analysis of Circadian Responses to Low Frequency Electromagnetic Fields in
- The Dissection of Meiotic Chromosome Movement in Mice Using an Electroporation Technique
- Altered Chromatin Occupancy of Master Regulators Underlies Evolutionary Divergence in the Transcriptional Landscape of Erythroid Differentiation
- Syd/JIP3 and JNK Signaling Are Required for Myonuclear Positioning and Muscle Function
- Notch Signaling Mediates the Age-Associated Decrease in Adhesion of Germline Stem Cells to the Niche
- Mutation of Leads to Blurred Tonotopic Organization of Central Auditory Circuits in Mice
- The IKAROS Interaction with a Complex Including Chromatin Remodeling and Transcription Elongation Activities Is Required for Hematopoiesis
- RAN-Binding Protein 9 is Involved in Alternative Splicing and is Critical for Male Germ Cell Development and Male Fertility
- Enhanced Longevity by Ibuprofen, Conserved in Multiple Species, Occurs in Yeast through Inhibition of Tryptophan Import
- Phosphorylation of Mitochondrial Polyubiquitin by PINK1 Promotes Parkin Mitochondrial Tethering
- Recurrent Loss of Specific Introns during Angiosperm Evolution
- Natural Variation Is Associated With Genome-Wide Methylation Changes and Temperature Seasonality
- SEEDSTICK is a Master Regulator of Development and Metabolism in the Arabidopsis Seed Coat
- Overlapping and Non-overlapping Functions of Condensins I and II in Neural Stem Cell Divisions
- Unisexual Reproduction Drives Meiotic Recombination and Phenotypic and Karyotypic Plasticity in
- Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in
- ABA-Mediated ROS in Mitochondria Regulate Root Meristem Activity by Controlling Expression in
- Mutations in Global Regulators Lead to Metabolic Selection during Adaptation to Complex Environments
- Global Analysis of Photosynthesis Transcriptional Regulatory Networks
- Mucolipin Co-deficiency Causes Accelerated Endolysosomal Vacuolation of Enterocytes and Failure-to-Thrive from Birth to Weaning
- Controlling Pre-leukemic Thymocyte Self-Renewal
- How Malaria Parasites Avoid Running Out of Ammo
- Echoes of the Past: Hereditarianism and
- Deep Reads: Strands in the History of Molecular Genetics
- Keep on Laying Eggs Mama, RNAi My Reproductive Aging Blues Away
- Analysis of a Plant Complex Resistance Gene Locus Underlying Immune-Related Hybrid Incompatibility and Its Occurrence in Nature
- Epistatic Adaptive Evolution of Human Color Vision
- Increased and Imbalanced dNTP Pools Symmetrically Promote Both Leading and Lagging Strand Replication Infidelity
- Genetic Basis of Haloperidol Resistance in Is Complex and Dose Dependent
- Genome-Wide Analysis of DNA Methylation Dynamics during Early Human Development
- Interaction between Conjugative and Retrotransposable Elements in Horizontal Gene Transfer
- The Evolution of Sex Ratio Distorter Suppression Affects a 25 cM Genomic Region in the Butterfly
- is Required for Adult Maintenance of Dopaminergic Neurons in the Ventral Substantia Nigra
- PRL1, an RNA-Binding Protein, Positively Regulates the Accumulation of miRNAs and siRNAs in Arabidopsis
- Genetic Control of Contagious Asexuality in the Pea Aphid
- Early Mesozoic Coexistence of Amniotes and Hepadnaviridae
- Local and Systemic Regulation of Plant Root System Architecture and Symbiotic Nodulation by a Receptor-Like Kinase
- Gene Pathways That Delay Reproductive Senescence
- The Evolution of Fungal Metabolic Pathways
- Maf1 Is a Novel Target of PTEN and PI3K Signaling That Negatively Regulates Oncogenesis and Lipid Metabolism
- Formation of Linear Amplicons with Inverted Duplications in Requires the MRE11 Nuclease
- Identification of Rare Causal Variants in Sequence-Based Studies: Methods and Applications to , a Gene Involved in Cohen Syndrome and Autism
- Rrp12 and the Exportin Crm1 Participate in Late Assembly Events in the Nucleolus during 40S Ribosomal Subunit Biogenesis
- The Mutations in the ATP-Binding Groove of the Rad3/XPD Helicase Lead to -Cockayne Syndrome-Like Phenotypes
- Topoisomerase I Plays a Critical Role in Suppressing Genome Instability at a Highly Transcribed G-Quadruplex-Forming Sequence
- A Cbx8-Containing Polycomb Complex Facilitates the Transition to Gene Activation during ES Cell Differentiation
- Transcriptional Frameshifting Rescues Type VI Secretion by the Production of Two Length Variants from the Prematurely Interrupted Gene
- Association Mapping across Numerous Traits Reveals Patterns of Functional Variation in Maize
- Genome-Wide Analysis of -Regulated and Phased Small RNAs Underscores the Importance of the ta-siRNA Pathway to Maize Development
- Dissemination of Cephalosporin Resistance Genes between Strains from Farm Animals and Humans by Specific Plasmid Lineages
- The Tau Tubulin Kinases TTBK1/2 Promote Accumulation of Pathological TDP-43
- Germline Signals Deploy NHR-49 to Modulate Fatty-Acid β-Oxidation and Desaturation in Somatic Tissues of
- Microevolution of in Macrophages Restores Filamentation in a Nonfilamentous Mutant
- Vangl2-Regulated Polarisation of Second Heart Field-Derived Cells Is Required for Outflow Tract Lengthening during Cardiac Development
- Chondrocytes Transdifferentiate into Osteoblasts in Endochondral Bone during Development, Postnatal Growth and Fracture Healing in Mice
- A ABC Transporter Regulates Lifespan
- RA and FGF Signalling Are Required in the Zebrafish Otic Vesicle to Pattern and Maintain Ventral Otic Identities
- , and Reprogram Thymocytes into Self-Renewing Cells
- The miR9863 Family Regulates Distinct Alleles in Barley to Attenuate NLR Receptor-Triggered Disease Resistance and Cell-Death Signaling
- Detection of Pleiotropy through a Phenome-Wide Association Study (PheWAS) of Epidemiologic Data as Part of the Environmental Architecture for Genes Linked to Environment (EAGLE) Study
- Extensive Copy-Number Variation of Young Genes across Stickleback Populations
- The and Genetic Modules Interact to Regulate Ciliogenesis and Ciliary Microtubule Patterning in
- Analysis of the Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in
- Maf1 Is a Novel Target of PTEN and PI3K Signaling That Negatively Regulates Oncogenesis and Lipid Metabolism
- The IKAROS Interaction with a Complex Including Chromatin Remodeling and Transcription Elongation Activities Is Required for Hematopoiesis
- Echoes of the Past: Hereditarianism and
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy