#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Early Mesozoic Coexistence of Amniotes and Hepadnaviridae


Viruses are not known to leave physical fossil traces, which makes our understanding of their evolutionary prehistory crucially dependent on the detection of endogenous viruses. Ancient endogenous viruses, also known as paleoviruses, are relics of viral genomes or fragments thereof that once infiltrated their host's germline and then remained as molecular “fossils” within the host genome. The massive genome sequencing of recent years has unearthed vast numbers of paleoviruses from various animal genomes, including the first endogenous hepatitis B viruses (eHBVs) in bird genomes. We screened genomes of land vertebrates (amniotes) for the presence of paleoviruses and identified ancient eHBVs in the recently sequenced genomes of crocodilians, snakes, and turtles. We report an eHBV that is >207 million years old, making it the oldest endogenous virus currently known. Furthermore, our results provide direct evidence that the Hepadnaviridae virus family infected birds, crocodilians and turtles during the Mesozoic Era, and suggest a long-lasting coexistence of these viruses and their amniote hosts at least since the Early Mesozoic. We challenge previous views on the origin of the oncogenic X gene and provide an evolutionary explanation as to why only mammalian hepatitis B infection leads to hepatocellular carcinoma.


Vyšlo v časopise: Early Mesozoic Coexistence of Amniotes and Hepadnaviridae. PLoS Genet 10(12): e32767. doi:10.1371/journal.pgen.1004559
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004559

Souhrn

Viruses are not known to leave physical fossil traces, which makes our understanding of their evolutionary prehistory crucially dependent on the detection of endogenous viruses. Ancient endogenous viruses, also known as paleoviruses, are relics of viral genomes or fragments thereof that once infiltrated their host's germline and then remained as molecular “fossils” within the host genome. The massive genome sequencing of recent years has unearthed vast numbers of paleoviruses from various animal genomes, including the first endogenous hepatitis B viruses (eHBVs) in bird genomes. We screened genomes of land vertebrates (amniotes) for the presence of paleoviruses and identified ancient eHBVs in the recently sequenced genomes of crocodilians, snakes, and turtles. We report an eHBV that is >207 million years old, making it the oldest endogenous virus currently known. Furthermore, our results provide direct evidence that the Hepadnaviridae virus family infected birds, crocodilians and turtles during the Mesozoic Era, and suggest a long-lasting coexistence of these viruses and their amniote hosts at least since the Early Mesozoic. We challenge previous views on the origin of the oncogenic X gene and provide an evolutionary explanation as to why only mammalian hepatitis B infection leads to hepatocellular carcinoma.


Zdroje

1. WeissRA, StoyeJP (2013) Our viral inheritance. Science 340: 820–821.

2. KatzourakisA, GiffordRJ (2010) Endogenous viral elements in animal genomes. PLoS Genetics 6: e1001191.

3. JohnsonWE (2010) Endless forms most viral. PLoS Genetics 6: e1001210.

4. HolmesEC (2011) The evolution of endogenous viral elements. Cell Host & Microbe 10: 368–377.

5. FeschotteC, GilbertC (2012) Endogenous viruses: insights into viral evolution and impact on host biology. Nature Reviews Genetics 13: 283–296.

6. Genome 10K Community of Scientists (2009) Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. Journal of Heredity 100: 659–674.

7. EllegrenH (2014) Genome sequencing and population genomics in non-model organisms. Trends in Ecology & Evolution 29: 51–63.

8. PatelMR, EmermanM, MalikHS (2011) Paleovirology – ghosts and gifts of viruses past. Current Opinion in Virology 1: 304–309.

9. KatzourakisA, GiffordRJ, TristemM, GilbertMTP, PybusOG (2009) Macroevolution of complex retroviruses. Science 325: 1512.

10. SuhA, BrosiusJ, SchmitzJ, KriegsJO (2013) The genome of a Mesozoic paleovirus reveals the evolution of hepatitis B viruses. Nature Communications 4: 1791.

11. BelyiVA, LevineAJ, SkalkaAM (2010) Unexpected inheritance: multiple integrations of ancient Bornavirus and Ebolavirus/Marburgvirus sequences in vertebrate genomes. PLoS Pathogens 6: e1001030.

12. PiaseckiT, HarkinsGW, ChrząstekK, JulianL, MartinDP, et al. (2013) Avihepadnavirus diversity in parrots is comparable to that found amongst all other avian species. Virology 438: 98–105.

13. DrexlerJF, GeipelA, KönigA, CormanVM, van RielD, et al. (2013) Bats carry pathogenic hepadnaviruses antigenically related to hepatitis B virus and capable of infecting human hepatocytes. Proceedings of the National Academy of Sciences 110: 16151–16156.

14. Mason WS, Gerlich WH, Taylor JM, Kann M, Mizokami T, et al. (2011) Family Hepadnaviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, editors. Virus Taxonomy: Classification and Nomenclature of Viruses (Ninth Report of the International Committee on Taxonomy of Viruses). Amsterdam: Elsevier. pp. 445–455.

15. ParaskevisD, MagiorkinisG, MagiorkinisE, HoSYW, BelshawR, et al. (2013) Dating the origin and dispersal of hepatitis B virus infection in humans and primates. Hepatology 57: 908–916.

16. LiawY-F, ChuC-M (2009) Hepatitis B virus infection. The Lancet 373: 582–592.

17. GilbertC, FeschotteC (2010) Genomic fossils calibrate the long-term evolution of hepadnaviruses. PLoS Biology 8: e1000495.

18. CuiJ, HolmesEC (2012) Endogenous hepadnaviruses in the genome of the budgerigar (Melopsittacus undulatus) and the evolution of avian hepadnaviruses. Journal of Virology 86: 7688–7691.

19. LiuW, PanS, YangH, BaiW, ShenZ, et al. (2012) The first full-length endogenous hepadnaviruses: identification and analysis. Journal of Virology 86: 9510–9513.

20. ChangS-F, NetterHJ, HildtE, SchusterR, SchaeferS, et al. (2001) Duck hepatitis B virus expresses a regulatory HBx-like protein from a hidden open reading frame. Journal of Virology 75: 161–170.

21. FeitelsonMA, LeeJ (2007) Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer Letters 252: 157–170.

22. FourelG, TrepoC, BougueleretL, HengleinB, PonzettoA, et al. (1990) Frequent activation of N-myc genes by hepadnavirus insertion in woodchuck liver tumours. Nature 347: 294–298.

23. FourelG, CouturierJ, WeiY, ApiouF, TiollaisP, et al. (1994) Evidence for long-range oncogene activation by hepadnavirus insertion. The EMBO Journal 13: 2526–2534.

24. HansenLJ, TennantBC, SeegerC, GanemD (1993) Differential activation of myc gene family members in hepatic carcinogenesis by closely related hepatitis B viruses. Molecular and Cellular Biology 13: 659–667.

25. SungW-K, ZhengH, LiS, ChenR, LiuX, et al. (2012) Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nature Genetics 44: 765–769.

26. WenY, GolubkovVS, StronginAY, JiangW, ReedJC (2008) Interaction of hepatitis B viral oncoprotein with cellular target HBXIP dysregulates centrosome dynamics and mitotic spindle formation. The Journal of Biological Chemistry 283: 2793–2803.

27. ShafferHB, MinxP, WarrenD, ShedlockA, ThomsonR, et al. (2013) The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biology 14: R28.

28. WangZ, Pascual-AnayaJ, ZadissaA, LiW, NiimuraY, et al. (2013) The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nature Genetics 45: 701–706.

29. VonkFJ, CasewellNR, HenkelCV, HeimbergAM, JansenHJ, et al. (2013) The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proceedings of the National Academy of Sciences 110: 20651–20656.

30. GreenRE, BraunEL, ArmstrongJ, EarlD, NguyenN, et al. (2014) Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 10.1126/science1254449 (in press).

31. WanQ-H, PanS-K, HuL, ZhuY, XuP-W, et al. (2013) Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator. Cell Research 23: 1091–1105.

32. St JohnJ, BraunE, IsbergS, MilesL, ChongA, et al. (2012) Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes. Genome Biology 13: 415.

33. BradnamK, FassJ, AlexandrovA, BaranayP, BechnerM, et al. (2013) Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaScience 2: 1–31.

34. CastoeTA, de KoningAPJ, HallKT, CardDC, SchieldDR, et al. (2013) The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proceedings of the National Academy of Sciences 110: 20645–20650.

35. AlföldiJ, Di PalmaF, GrabherrM, WilliamsC, KongL, et al. (2011) The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477: 587–591.

36. LanderES, LintonLM, BirrenB, NusbaumC, ZodyMC, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.

37. MikkelsenTS, WakefieldMJ, AkenB, AmemiyaCT, ChangJL, et al. (2007) Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447: 167–177.

38. WarrenWC, HillierLW, GravesJAM, BirneyE, PontingCP, et al. (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature 453: 175–183.

39. Shaffer HB (2009) Turtles (Testudines). In: Hedges SB, Kumar S, editors. The Timetree of Life. New York: Oxford University Press. pp. 398–401.

40. Shedlock AM, Edwards SV (2009) Amniotes (Amniota). In: Hedges SB, Kumar S, editors. The Timetree of Life. New York: Oxford University Press. pp. 375–379.

41. HarshmanJ, HuddlestonCJ, BollbackJP, ParsonsTJ, BraunMJ (2003) True and false gharials: a nuclear gene phylogeny of Crocodylia. Systematic Biology 52: 386–402.

42. Brochu CA (2009) Crocodylians (Crocodylia). In: Hedges SB, Kumar S, editors. The Timetree of Life. New York: Oxford University Press. pp. 402–406.

43. OaksJR (2011) A time-calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution 65: 3285–3297.

44. JankeA, GullbergA, HughesS, AggarwalR, ArnasonU (2005) Mitogenomic analyses place the gharial (Gavialis gangeticus) on the crocodile tree and provide pre-K/T divergence times for most crocodilians. Journal of Molecular Evolution 61: 620–626.

45. RoosJ, AggarwalRK, JankeA (2007) Extended mitogenomic phylogenetic analyses yield new insight into crocodylian evolution and their survival of the Cretaceous–Tertiary boundary. Molecular Phylogenetics and Evolution 45: 663–673.

46. HugallAF, FosterR, LeeMSY (2007) Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1. Systematic Biology 56: 543–563.

47. PereiraSL, BakerAJ (2006) A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Molecular Biology and Evolution 23: 1731–1740.

48. OkajimaY, KumazawaY (2009) Mitogenomic perspectives into iguanid phylogeny and biogeography: Gondwanan vicariance for the origin of Madagascan oplurines. Gene 441: 28–35.

49. RestJS, AstJC, AustinCC, WaddellPJ, TibbettsEA, et al. (2003) Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. Molecular Phylogenetics and Evolution 29: 289–297.

50. FujitaP, RheadB, ZweigA, HinrichsA, KarolchikD, et al. (2011) The UCSC Genome Browser database: update 2011. Nucleic Acids Research 39: D876–D882.

51. BeckJ, NassalM (2007) Hepatitis B virus replication. World Journal of Gastroenterology 13: 48–64.

52. PollackJR, GanemD (1993) An RNA stem-loop structure directs hepatitis B virus genomic RNA encapsidation. Journal of Virology 67: 3254–3263.

53. PollackJR, GanemD (1994) Site-specific RNA binding by a hepatitis B virus reverse transcriptase initiates two distinct reactions: RNA packaging and DNA synthesis. Journal of Virology 68: 5579–5587.

54. NassalM, RiegerA (1996) A bulged region of the hepatitis B virus RNA encapsidation signal contains the replication origin for discontinuous first-strand DNA synthesis. Journal of Virology 70: 2764–2773.

55. BeckJ, BartosH, NassalM (1997) Experimental Confirmation of a Hepatitis B Virus (HBV) ε-like Bulge-and-Loop Structure in Avian HBV RNA Encapsidation Signals. Virology 227: 500–504.

56. PiaseckiT, KurenbachB, ChrząstekK, BednarekK, KrabergerS, et al. (2012) Molecular characterisation of an avihepadnavirus isolated from Psittacula krameri (ring-necked parrot). Archives of Virology 157: 585–590.

57. BollykyP, RambautA, HarveyP, HolmesE (1996) Recombination between sequences of hepatitis B virus from different genotypes. Journal of Molecular Evolution 42: 97–102.

58. MeierP, ScougallCA, WillH, BurrellCJ, JilbertAR (2003) A duck hepatitis B virus strain with a knockout mutation in the putative X ORF shows similar infectivity and in vivo growth characteristics to wild-type virus. Virology 317: 291–298.

59. KeesePK, GibbsA (1992) Origins of genes: “big bang” or continuous creation? Proceedings of the National Academy of Sciences 89: 9489–9493.

60. PavesiA, MagiorkinisG, KarlinDG (2013) Viral proteins originated de novo by overprinting can be identified by codon usage: application to the “gene nursery” of Deltaretroviruses. PLoS Computational Biology 9: e1003162.

61. KrakauerDC (2000) Stability and evolution of overlapping genes. Evolution 54: 731–739.

62. TollisM, BoissinotS (2011) The transposable element profile of the Anolis genome: How a lizard can provide insights into the evolution of vertebrate genome size and structure. Mobile Genetic Elements 1: 107–111.

63. SuhA, ChurakovG, RamakodiMP, Platt IIRN, JurkaJ, et al. (2014) Multiple lineages of ancient CR1 retroposons shaped the early genome evolution of amniotes. Genome Biology and Evolution 10.1093/gbe/evu256 (in press).

64. BraunE, KimballR, HanK-L, Iuhasz-VelezN, BonillaA, et al. (2011) Homoplastic microinversions and the avian tree of life. BMC Evolutionary Biology 11: 141.

65. SchusterR, HildtE, ChangS-F, TerradillosO, PollicinoT, et al. (2002) Conserved transactivating and pro-apoptotic functions of hepadnaviral X protein in ortho- and avihepadnaviruses. Oncogene 21: 6606–6613.

66. van HemertFJ, van de KlundertMAA, LukashovVV, KootstraNA, BerkhoutB, et al. (2011) Protein X of hepatitis B virus: origin and structure similarity with the central domain of DNA glycosylase. PLoS ONE 6: e23392.

67. LiT, RobertEI, van BreugelPC, StrubinM, ZhengN (2010) A promiscuous α-helical motif anchors viral hijackers and substrate receptors to the CUL4–DDB1 ubiquitin ligase machinery. Nature Structural & Molecular Biology 17: 105–112.

68. LinW-S, JiaoB-Y, WuY-L, ChenW-N, LinX (2012) Hepatitis B virus X protein blocks filamentous actin bundles by interaction with eukaryotic translation elongation factor 1 alpha 1. Journal of Medical Virology 84: 871–877.

69. AltschulSF, MaddenTL, SchäfferAA, ZhangJ, ZhangZ, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402.

70. KatohK, TohH (2008) Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9: 286–298.

71. SuhA, PausM, KiefmannM, ChurakovG, FrankeFA, et al. (2011) Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nature Communications 2: 443.

72. YangZ (2007) PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24: 1586–1591.

73. DarribaD, TaboadaGL, DoalloR, PosadaD (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Meth 9: 772–772.

74. ZukerM (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31: 3406–3415.

75. ZlotnickA, StahlSJ, WingfieldPT, ConwayJF, ChengN, et al. (1998) Shared motifs of the capsid proteins of hepadnaviruses and retroviruses suggest a common evolutionary origin. FEBS Letters 431: 301–304.

76. StamatakisA, HooverP, RougemontJ (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 75: 758–771.

77. TamuraK, PetersonD, PetersonN, StecherG, NeiM, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.

78. Hedges SB, Vidal N (2009) Lizards, snakes, and amphisbaenians (Squamata). In: Hedges SB, Kumar S, editors. The Timetree of Life. New York: Oxford University Press. pp. 383–389.

79. Vidal N, Rage J-C, Couloux A, Hedges SB (2009) Snakes (Serpentes). In: Hedges SB, Kumar S, editors. The Timetree of Life. New York: Oxford University Press. pp. 390–397.

80. Brown JW, van Tuinen M (2011) Evolving perceptions on the antiquity of the modern avian tree. In: Dyke G, Kaiser G, editors. Living Dinosaurs: The Evolutionary History of Modern Birds. Chichester: John Wiley & Sons, Ltd. pp. 306–324.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#