#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Global Analysis of Photosynthesis Transcriptional Regulatory Networks


Photosynthetic organisms are among the most abundant life forms on earth. Their unique ability to harvest solar energy and use it to fix atmospheric carbon dioxide is at the foundation of the global food chain. This paper reports the first comprehensive analysis of networks that control expression of photosynthesis genes using Rhodobacter sphaeroides, a microbe that has been studied for decades as a model of solar energy capture and other aspects of the photosynthetic lifestyle. We find a previously unappreciated complexity in the level of control of photosynthetic genes, while identifying new links between photosynthesis and central processes like iron availability. This organism is an ancestor of modern day plants, so our data can inform studies in other photosynthetic organisms and improve our ability to harness solar energy for food and industrial processes.


Vyšlo v časopise: Global Analysis of Photosynthesis Transcriptional Regulatory Networks. PLoS Genet 10(12): e32767. doi:10.1371/journal.pgen.1004837
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004837

Souhrn

Photosynthetic organisms are among the most abundant life forms on earth. Their unique ability to harvest solar energy and use it to fix atmospheric carbon dioxide is at the foundation of the global food chain. This paper reports the first comprehensive analysis of networks that control expression of photosynthesis genes using Rhodobacter sphaeroides, a microbe that has been studied for decades as a model of solar energy capture and other aspects of the photosynthetic lifestyle. We find a previously unappreciated complexity in the level of control of photosynthetic genes, while identifying new links between photosynthesis and central processes like iron availability. This organism is an ancestor of modern day plants, so our data can inform studies in other photosynthetic organisms and improve our ability to harness solar energy for food and industrial processes.


Zdroje

1. AtsumiS, HigashideW, LiaoJC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27: 1177–1180.

2. GronenbergLS, MarcheschiRJ, LiaoJC (2013) Next generation biofuel engineering in prokaryotes. Curr Opin Chem Biol 17: 462–471.

3. Hunter CN, Daldal F., Thurnauer, M C. and Beatty, J T. (2009) The purple phototrophic bacteria: Springer.

4. Peralta-YahyaPP, ZhangF, del CardayreSB, KeaslingJD (2012) Microbial engineering for the production of advanced biofuels. Nature 488: 320–328.

5. Blankenship RE, Madigan MT, Bauer CE (1995) Anoxygenic photosynthetic bacteria; Blankenship R E, editor.1330 p.

6. GomelskyL, MoskvinOV, StenzelRA, JonesDF, DonohueTJ, et al. (2008) Hierarchical regulation of photosynthesis gene expression by the oxygen-responsive PrrBA and AppA-PpsR systems of Rhodobacter sphaeroides. J Bacteriol 190: 8106–8114.

7. MackenzieC, ErasoJM, ChoudharyM, RohJH, ZengX, et al. (2007) Postgenomic adventures with Rhodobacter sphaeroides. Annu Rev Microbiol 61: 283–307.

8. Zeilstra-RyallsJ, GomelskyM, ErasoJM, YeliseevA, O'GaraJ, et al. (1998) Control of photosystem formation in Rhodobacter sphaeroides. J Bacteriol 180: 2801–2809.

9. Zeilstra-RyallsJH, KaplanS (1995) Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: the role of the fnrL gene. J Bacteriol 177: 6422–6431.

10. Imam S (2014) Integrated modeling of metabolism and transcriptional regulation in Rhodobacter sphaeroides. Madison: University of Wisconsin-Madison. Available: http://gradworks.umi.com/36/18/3618539.html p.

11. ImamS, NogueraDR, DonohueTJ (2013) Global insights into energetic and metabolic networks in Rhodobacter sphaeroides. BMC Syst Biol 7: 89.

12. ImamS, YilmazS, SohmenU, GorzalskiAS, ReedJL, et al. (2011) iRsp1095: a genome-scale reconstruction of the Rhodobacter sphaeroides metabolic network. BMC Syst Biol 5: 116.

13. KhatipovE, MiyakeM, MiyakeJ, YAsada (1999) Polyhydroxybutyrate accumulation and hydrogen evolution by Rhodobacter sphaeroides as a function of nitrogen availability. Biohydrogen III: 157–161.

14. KienNB, KongIS, LeeMG, KimJK (2010) Coenzyme Q10 production in a 150-l reactor by a mutant strain of Rhodobacter sphaeroides. J Ind Microbiol Biotechnol 37: 521–529.

15. KonturWS, ZiegelhofferEC, SperoMA, ImamS, NogueraDR, et al. (2011) Pathways involved in reductant distribution during photobiological H2 production by Rhodobacter sphaeroides. Appl Environ Microbiol 77: 7425–7429.

16. Tabita FR (1995) The biochemistry and metabolic regulation of carbon metabolism and CO2-fixation in purple bacteria. In: Blankenship RE, Madigan MT, Bauer CE, editors. Anoxygenic photosynthetic bacteria. The Netherlands: Kluwer Academic Publishers.pp.885–914.

17. WahlundTM, ConwayT, TabitaFR (1996) Bioconversion of CO2 to ethanol and other compounds. American Chemical Society Division of Fuel Chemistry 3: 1403–1405.

18. Yilmaz LS, Kontur WS, Sanders AP, Sohmen U, Donohue TJ, et al. (2010) Electron partitioning during light- and nutrient-powered hydrogen production by Rhodobacter sphaeroides. Bioenerg Res Volume: 55–66.

19. ErasoJM, KaplanS (1994) prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides. J Bacteriol 176: 32–43.

20. ErasoJM, RohJH, ZengX, CallisterSJ, LiptonMS, et al. (2008) Role of the global transcriptional regulator PrrA in Rhodobacter sphaeroides 2.4.1: combined transcriptome and proteome analysis. J Bacteriol 190: 4831–4848.

21. ErasoJM, KaplanS (1995) Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase. J Bacteriol 177: 2695–2706.

22. DangelAW, TabitaFR (2009) Protein-protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides. Mol Microbiol 71: 717–729.

23. LaguriC, Phillips-JonesMK, WilliamsonMP (2003) Solution structure and DNA binding of the effector domain from the global regulator PrrA (RegA) from Rhodobacter sphaeroides: insights into DNA binding specificity. Nucleic Acids Res 31: 6778–6787.

24. DufourYS, KileyPJ, DonohueTJ (2010) Reconstruction of the core and extended regulons of global transcription factors. PLoS Genet 6: e1001027.

25. Zeilstra-RyallsJH, KaplanS (1998) Role of the fnrL gene in photosystem gene expression and photosynthetic growth of Rhodobacter sphaeroides 2.4.1. J Bacteriol 180: 1496–1503.

26. BruscellaP, ErasoJM, RohJH, KaplanS (2008) The use of chromatin immunoprecipitation to define PpsR binding activity in Rhodobacter sphaeroides 2.4.1. J Bacteriol 190: 6817–6828.

27. GomelskyM, KaplanS (1995) Genetic evidence that PpsR from Rhodobacter sphaeroides 2.4.1 functions as a repressor of puc and bchF expression. J Bacteriol 177: 1634–1637.

28. MankNN, BerghoffBA, HermannsYN, KlugG (2012) Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ. Proc Natl Acad Sci U S A 109: 16306–16311.

29. GomelskyM, KaplanS (1995) appA, a novel gene encoding a trans-acting factor involved in the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 177: 4609–4618.

30. ParkDM, AkhtarMS, AnsariAZ, LandickR, KileyPJ (2013) The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally. PLoS Genet 9: e1003839.

31. BerghoffBA, GlaeserJ, SharmaCM, VogelJ, KlugG (2009) Photooxidative stress-induced and abundant small RNAs in Rhodobacter sphaeroides. Mol Microbiol 74: 1497–1512.

32. Ranson-OlsonB, JonesDF, DonohueTJ, Zeilstra-RyallsJH (2006) In vitro and in vivo analysis of the role of PrrA in Rhodobacter sphaeroides 2.4.1 hemA gene expression. J Bacteriol 188: 3208–3218.

33. WillettJ, SmartJL, BauerCE (2007) RegA control of bacteriochlorophyll and carotenoid synthesis in Rhodobacter capsulatus. J Bacteriol 189: 7765–7773.

34. BatemanA, CoinL, DurbinR, FinnRD, HollichV, et al. (2004) The Pfam protein families database. Nucleic Acids Res 32: D138–141.

35. AddleseeHA, FiedorL, HunterCN (2000) Physical mapping of bchG, orf427, and orf177 in the photosynthesis gene cluster of Rhodobacter sphaeroides: functional assignment of the bacteriochlorophyll synthetase gene. J Bacteriol 182: 3175–3182.

36. AddleseeHA, HunterCN (1999) Physical mapping and functional assignment of the geranylgeranyl-bacteriochlorophyll reductase gene, bchP, of Rhodobacter sphaeroides. J Bacteriol 181: 7248–7255.

37. OhJI, ErasoJM, KaplanS (2000) Interacting regulatory circuits involved in orderly control of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 182: 3081–3087.

38. ErasoJM, KaplanS (2009) Regulation of gene expression by PrrA in Rhodobacter sphaeroides 2.4.1: role of polyamines and DNA topology. J Bacteriol 191: 4341–4352.

39. ErasoJM, KaplanS (2009) Half-Site DNA sequence and spacing length contributions to PrrA binding to PrrA site 2 of RSP3361 in Rhodobacter sphaeroides 2.4.1. J Bacteriol 191: 4353–4364.

40. ComolliJC, CarlAJ, HallC, DonohueT (2002) Transcriptional activation of the Rhodobacter sphaeroides cytochrome c(2) gene P2 promoter by the response regulator PrrA. J Bacteriol 184: 390–399.

41. MounceyNJ, KaplanS (1998) Cascade regulation of dimethyl sulfoxide reductase (dor) gene expression in the facultative phototroph Rhodobacter sphaeroides 2.4.1T. J Bacteriol 180: 2924–2930.

42. ZiegelhofferEC, DonohueTJ (2009) Bacterial responses to photo-oxidative stress. Nat Rev Microbiol 7: 856–863.

43. ToddJD, WexlerM, SawersG, YeomanKH, PoolePS, et al. (2002) RirA, an iron-responsive regulator in the symbiotic bacterium Rhizobium leguminosarum. Microbiology 148: 4059–4071.

44. YeomanKH, CursonAR, ToddJD, SawersG, JohnstonAW (2004) Evidence that the Rhizobium regulatory protein RirA binds to cis-acting iron-responsive operators (IROs) at promoters of some Fe-regulated genes. Microbiology 150: 4065–4074.

45. AlonU (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8: 450–461.

46. BallezaE, Lopez-BojorquezLN, Martinez-AntonioA, Resendis-AntonioO, Lozada-ChavezI, et al. (2009) Regulation by transcription factors in bacteria: beyond description. FEMS Microbiol Rev 33: 133–151.

47. BalajiS, BabuMM, AravindL (2007) Interplay between network structures, regulatory modes and sensing mechanisms of transcription factors in the transcriptional regulatory network of E. coli. J Mol Biol 372: 1108–1122.

48. ButalaM, Zgur-BertokD, BusbySJ (2009) The bacterial LexA transcriptional repressor. Cell Mol Life Sci 66: 82–93.

49. ChoBK, FederowiczS, ParkYS, ZenglerK, PalssonBO (2011) Deciphering the transcriptional regulatory logic of amino acid metabolism. Nat Chem Biol 8: 65–71.

50. KroosL (2007) The Bacillus and Myxococcus developmental networks and their transcriptional regulators. Annu Rev Genet 41: 13–39.

51. ZhengLB, LosickR (1990) Cascade regulation of spore coat gene expression in Bacillus subtilis. J Mol Biol 212: 645–660.

52. Freyre-GonzalezJA, Manjarrez-CasasAM, MerinoE, Martinez-NunezM, Perez-RuedaE, et al. (2013) Lessons from the modular organization of the transcriptional regulatory network of Bacillus subtilis. BMC Syst Biol 7: 127.

53. EichenbergerP, FujitaM, JensenST, ConlonEM, RudnerDZ, et al. (2004) The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol 2: e328.

54. ChubukovV, GerosaL, KochanowskiK, SauerU (2014) Coordination of microbial metabolism. Nat Rev Microbiol 12: 327–340.

55. PorterSL, WadhamsGH, ArmitageJP (2011) Signal processing in complex chemotaxis pathways. Nat Rev Microbiol 9: 153–165.

56. AraiH, RohJH, KaplanS (2008) Transcriptome dynamics during the transition from anaerobic photosynthesis to aerobic respiration in Rhodobacter sphaeroides 2.4.1. J Bacteriol 190: 286–299.

57. KileyPJ, KaplanS (1988) Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. Microbiol Rev 52: 50–69.

58. LiH, ShermanLA (2000) A redox-responsive regulator of photosynthesis gene expression in the cyanobacterium Synechocystis sp. Strain PCC 6803. J Bacteriol 182: 4268–4277.

59. AlfonsoM, PerewoskaI, KirilovskyD (2000) Redox control of psbA gene expression in the cyanobacterium Synechocystis PCC 6803. Involvement of the cytochrome b(6)/f complex. Plant Physiol 122: 505–516.

60. PuthiyaveetilS, AllenJF (2009) Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression. Proc Biol Sci 276: 2133–2145.

61. PuthiyaveetilS, KavanaghTA, CainP, SullivanJA, NewellCA, et al. (2008) The ancestral symbiont sensor kinase CSK links photosynthesis with gene expression in chloroplasts. Proc Natl Acad Sci U S A 105: 10061–10066.

62. SatoS, ShimodaY, MurakiA, KoharaM, NakamuraY, et al. (2007) A large-scale protein protein interaction analysis in Synechocystis sp. PCC6803. DNA Res 14: 207–216.

63. SwemLR, GongX, YuCA, BauerCE (2006) Identification of a ubiquinone-binding site that affects autophosphorylation of the sensor kinase RegB. J Biol Chem 281: 6768–6775.

64. MikamiK, KanesakiY, SuzukiI, MurataN (2002) The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp PCC 6803. Mol Microbiol 46: 905–915.

65. AshbyMK, MullineauxCW (1999) Cyanobacterial ycf27 gene products regulate energy transfer from phycobilisomes to photosystems I and II. FEMS Microbiol Lett 181: 253–260.

66. KappellAD, van WaasbergenLG (2007) The response regulator RpaB binds the high light regulatory 1 sequence upstream of the high-light-inducible hliB gene from the cyanobacterium Synechocystis PCC 6803. Arch Microbiol 187: 337–342.

67. PuthiyaveetilS, IbrahimIM, JelicicB, TomasicA, FulgosiH, et al. (2010) Transcriptional control of photosynthesis genes: the evolutionarily conserved regulatory mechanism in plastid genome function. Genome Biol Evol 2: 888–896.

68. YinL, DragneaV, FeldmanG, HammadLA, KartyJA, et al. (2013) Redox and light control the heme-sensing activity of AppA. MBio 4: e00563–00513.

69. EnglemanEG, FrancisSH (1978) Cascade control of E. coli glutamine synthetase. II. Metabolite regulation of the enzymes in the cascade. Arch Biochem Biophys 191: 602–612.

70. van HeeswijkWC, RabenbergM, WesterhoffHV, KahnD (1993) The genes of the glutamine synthetase adenylylation cascade are not regulated by nitrogen in Escherichia coli. Mol Microbiol 9: 443–457.

71. MyersKS, YanH, OngIM, ChungD, LiangK, et al. (2013) Genome-scale analysis of Escherichia coli FNR reveals complex features of transcription factor binding. PLoS Genet 9: e1003565.

72. DurandS, StorzG (2010) Reprogramming of anaerobic metabolism by the FnrS small RNA. Mol Microbiol 75: 1215–1231.

73. ChoBK, KnightEM, BarrettCL, PalssonBO (2008) Genome-wide analysis of Fis binding in Escherichia coli indicates a causative role for A-/AT-tracts. Genome Res 18: 900–910.

74. BetermierM, GalasDJ, ChandlerM (1994) Interaction of Fis protein with DNA: bending and specificity of binding. Biochimie 76: 958–967.

75. SistromWR (1960) A requirement for sodium in the growth of Rhodopseudomonas spheroides. J Gen Microbiol 22: 778–785.

76. Cohen-BazireG, SistromWR, StanierRY (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol 49: 25–68.

77. LowryOH, RosebroughNJ, FarrAL, RandallRJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275.

78. DufourYS, ImamS, KooBM, GreenHA, DonohueTJ (2012) Convergence of the transcriptional responses to heat shock and singlet oxygen stresses. PLoS Genet 8: e1002929.

79. SchaferA, TauchA, JagerW, KalinowskiJ, ThierbachG, et al. (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145: 69–73.

80. IndAC, PorterSL, BrownMT, BylesED, de BeyerJA, et al. (2009) Inducible-expression plasmid for Rhodobacter sphaeroides and Paracoccus denitrificans. Appl Environ Microbiol 75: 6613–6615.

81. SchilkeBA, DonohueTJ (1995) ChrR positively regulates transcription of the Rhodobacter sphaeroides cytochrome c2 gene. J Bacteriol 177: 1929–1937.

82. TavanoCL, PodevelsAM, DonohueTJ (2005) Identification of genes required for recycling reducing power during photosynthetic growth. J Bacteriol 187: 5249–5258.

83. BolstadBM, IrizarryRA, AstrandM, SpeedTP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185–193.

84. Smyth G (2004) Applications in genetics and molecular biology 3: Berkeley Electronic Press.

85. BenjaminiY, HochbergY (1995) Controlling the false discovery rate - a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-Methodological 57: 289–300.

86. DufourYS, LandickR, DonohueTJ (2008) Organization and evolution of the biological response to singlet oxygen stress. J Mol Biol 383: 713–730.

87. LiR, YuC, LiY, LamTW, YiuSM, et al. (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25: 1966–1967.

88. KuanPF, ChungD, PanG, ThomsonJA, StewartR, et al. (2011) A statistical framework for the analysis of ChIP-seq data. Journal of the American Statistical Association 106: 891–903.

89. BaileyTL, BodenM, BuskeFA, FrithM, GrantCE, et al. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37: W202–208.

90. HomannOR, JohnsonAD (2010) MochiView: versatile software for genome browsing and DNA motif analysis. BMC Biol 8: 49.

91. LongabaughWJ, DavidsonEH, BolouriH (2009) Visualization, documentation, analysis, and communication of large-scale gene regulatory networks. Biochim Biophys Acta 1789: 363–374.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#