#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Femtosecond laser induced step-like structures inside transparent hydrogel due to laser induced threshold reduction


Autoři: Emanuel Saerchen aff001;  Susann Liedtke-Gruener aff002;  Maximilian Kopp aff001;  Alexander Heisterkamp aff001;  Holger Lubatschowski aff002;  Tammo Ripken aff001
Působiště autorů: Laser Zentrum Hannover e.V., Hannover, Germany aff001;  Rowiak GmbH, Hannover, Germany aff002;  Institut fuer Quantenoptik, Leibniz Universitaet Hannover, Hannover, Germany aff003
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222293

Souhrn

In the area of laser material processing, versatile applications for cutting glasses and transparent polymers exist. However, parasitic effects such as the creation of step-like structures appear when laser cutting inside a transparent material. To date, these structures were only described empirically. This work establishes the physical and chemical mechanisms behind the observed effects and describes the influence of process and material parameters onto the creation of step-like structures in hydrogel, Dihydroxyethylmethacrylat (HEMA). By focusing laser pulses in HEMA, reduced pulse separation distance below 50 nm and rise in pulse energy enhances the creation of unintended step-like structures. Spatial resolved Raman-spectroscopy was used to measure the laser induced chemical modification, which results into a reduced breakdown threshold. The reduction in threshold influences the position of optical breakdown for the succeeding laser pulses and consequently leads to the step-like structures. Additionally, the experimental findings were supplemented with numerical simulations of the influence of reduced damage threshold onto the position of optical breakdown.

In summary, chemical material change was defined as cause of the step-like structures. Furthermore, the parameters to avoid these structures were identified.

Klíčová slova:

Physical sciences – Chemistry – Engineering and technology – Polymer chemistry – Macromolecules – Polymers – Materials science – Materials – Physics – Equipment – Optical equipment – Mixtures – Electromagnetic radiation – Light – Amorphous solids – Lasers – Laser beams – Optical lenses – Optical materials – Gels – Optics – Numerical aperture – Light pulses


Zdroje

1. Cheng Y, Sugioka K, Masuda M, Aoki N, Kawachi M, Shihoyama K, et al. 3D microstructuring inside Foturan glass by femtosecond laser. Riken Review. 2003; 50 (5): 101–106.

2. Giniunas L. Processing of transparent materials with ultra short pulse lasers. 8th International Conference on Photonic Technologies LANE 2014. 2014; SS. 5–8.

3. Oujja M, Pérez S, Fadeeva E, Koch J, Chichkov BN, Castillejo M. Three dimensional microstructuring of biopolymers by femtosecond laser irradiation. Applied Physics Letters. 2009; 95 (26). doi: 10.1063/1.3274132

4. Farjo AA, Sugar A, Schallhorn SC, Majmudar PA, Tanzer DJ, Trattler WB, et al. Femto-second lasers for LASIK flap creation: A report by the American academy of ophthalmology. Ophthalmology. 2013; 120 (3): e5–e20. doi: 10.1016/j.ophtha.2012.08.013 23174396

5. Lubatschowski H. Update Femtosekundenlaser-Technologien in der Augenheilkunde. Klinische Monatsblätter für Augenheilkunde. 2013; 230 (12): 1207–1212. doi: 10.1055/s-0033-1351058 24327283

6. Gattass RR. Femtosecond-laser interactions with transparent materials: applications in micromachining and supercontinuum generation. Doctoral Dissertation, Harvard University. 2006.

7. Koenig K, Riemann I, Fischer P, Halbhuber KJ. Intracellular nanosurgery with near infrared femtosecond laser pulses. Cellular and molecular biology. 1999; 45 (2): 195–201. 10230728

8. Korte F, Serbin J, Koch J, Egbert A, Fallnich C, Ostendorf A, Chichkov BN. Towards nanostructuring with femtosecond laser pulses. Applied Physics A: Materials Science & Processing. 2003; 77 (2): 229–235.

9. Vogel A, Noack J, Hüttman G, Paltauf G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Applied Physics B: Lasers and Optics. 2005; 81 (8): 1015–1047.

10. Hammer DX, Jansen ED, Frenz M, Noojin GD, Thomas RJ, Noack J, et al. Shielding properties of laser-induced breakdown in water for pulse durations from 5 ns to 125 fs. Applied Optics. 1997; 36 (22): 5630. doi: 10.1364/ao.36.005630 18259389

11. Vogel A, Noack J, Nahen K, Theisen D, Busch S, Parlitz U, et al. Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Applied Physics B: Lasers and Optics. 1999; 68 (2): 271–280.

12. Kruer WL. The Physics of Laser Plasma Interactions. 1st ed. Westview Press book; 2003.

13. Keldysh LV. Ionization in the field of a strong electromagnetic wave. Soviet Physics JETP. 1965; 20 (5): 1307–1314.

14. Tinne N, Kaune B, Krueger A, Ripken T. Interaction Mechanisms of Cavitation Bubbles Induced by Spatially and Temporally Separated fs-Laser Pulses. PLoS ONE. 2014; 9(12):e114437. doi: 10.1371/journal.pone.0114437 25502697

15. Miese CT, Withford MJ, Fuerbach A. Femtosecond laser direct writing of waveguide Bragg gratings in a quasi cumulative heating regime. Optics Express. 2011; 19(20): 19.542–19.550.

16. Tan D, Sharafudeen KN, Yue Y, Qiu J. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications. Progress in Materials Science. 2016; 76:154–228.

17. Terakawa M, Toratani E, Shirakawa T, Obara M. Fabrication of a void array in dielectric materials by femtosecond laser micro-processing for compact photonic devices. Applied Physics A: Materials Science and Processing. 2010; 100(4): 1041–1047.

18. Toratani E, Kamata M, Obara M. Self-organization of nano-void array for photonic crystal device. Microelectronic Engineering. 2006; 83(4–9 SPEC. ISS.): 1782–1785.

19. Musgraves JD, Richardson K, Jain H. Laser-induced structural modification, its mechanisms, and applications in glassy optical materials. Optical Materials. 2011; 1(5): 921–935.

20. Shah L, Yoshino F, Arai A, Eaton S, Zhang H, Ho S, Herman PR. MHz-rate ultrafast fiber laser for writing of optical waveguides in Silica glasses. Proc. of SPIE. 2005; 5714: 253–260.

21. Eaton SM, Zhang H, Herman PR, Yoshino F, Shah L, Bovatsek J, Arai AY. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Optics Express. 2005; 13(12): 4708–4716. doi: 10.1364/opex.13.004708 19495387

22. Heberle J, Klämpfl F, Alexeev I, Schmidt M. Ultrashort Pulse Laser Cutting of Intraocular Lens Polymers. Journal of Laser Micro/Nanoengineering. 2014; 9(2): 103–107.

23. Xu L, Knox WH. Lateral gradient index microlenses written in ophthalmic hydrogel polymers by femtosecond laser micromachining. Optical Materials Express. 2011; 1(8): 1416.

24. Ding L, Blackwell R, Kunzler JF, Knox WH. Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining. Optics Express. 2006; 14(24): 11.901–11.909.

25. Lubatschowski H. Laser Microtomy. Optik & Photonik. 2007; 2(2): 49–51.

26. Seiler T. Innovationen in der refraktiven Laserchirurgie 2014. Ophthalmologe. 2014; 111(6): 539–542. doi: 10.1007/s00347-013-2993-9 24942120

27. Lubatschowski H. Overview of commercially available femtosecond lasers in refractive surgery. Journal of Refractive Surgery. 2008; 24: S102–S107. doi: 10.3928/1081597X-20080101-18 18269159

28. Donaldson KE, Braga-Mele R, Cabot F, Davidson R, Dhaliwal DK, Hamilton R, et al. Femtosecond laser-assisted cataract surgery. Journal of Cataract and Refractive Surgery. 2013; 39(11): 1753–1763. doi: 10.1016/j.jcrs.2013.09.002 24160384

29. Ding L. Micro-processing of Polymers and Biological Materials Using High Repetition Rate Femtosecond Laser Pulses. Doctoral Dissertation, University of Rochester. 2009.

30. Schumacher S. Entwicklung einer Ultrakurzpuls-Laserapplikationseinheit zur Behandlung der Altersweitsichtigkeit. Doctoral Dissertation, Gottfried Wilhelm Leibniz Universität Hannover. 2009.

31. Shaltev MV. Untersuchung der Puls-zu-Puls Wechselwirkung in Hydroxyethylen Methacrylat. Diplomarbeit, Gottfried Wilhelm Leibniz Universität Hannover. 2009.

32. Ganin DV, Obidin AZ, Lapshin KE, Vartapetov SK. Femtosecond Laser Fabrication of Periodical Structures in Bulk of Transparent Dielectrics. Physics Procedia. 2015; 73: 67–73.

33. Vartapetov SK, Ganin DV, Lapshin KE, Obidin AZ. Femtosecond-laser fabrication of cyclic structures in the bulk of transparent dielectrics. Quantum Electronics. 2015; 45(8): 725–730.

34. Bellouard Y, Hongler MO. Femtosecond-laser generation of self-organized bubble patterns in fused silica. Optics Express. 2011; 19(7): 6807–6821. doi: 10.1364/OE.19.006807 21451708

35. Kazansky PG, Yang W, Bricchi E, Bovatsek J, Arai A. "Quill"writing with ultrashort light pulses in transparent optical materials. Applied Physics Letters. 2007; 90(151120): 23–25.

36. Matsuo S, Hashimoto S. Spontaneous formation of 10-μm-scale periodic patterns in transverse-scanning femtosecond laser processing. Optics Express. 2015; 23(1): 165. doi: 10.1364/OE.23.000165 25835663

37. Richter S, Döring S, Burmeister F, Zimmermann F, Tünnermann A, Nolte S. Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses. Optics Express. 2013; 21(13): 15.452–15.463.

38. Vitek DN, Block E, Bellouard Y, Adams DE, Backus S, Kleinfeld D, et al. Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials. Optics Express. 2010; 18(24): 24.673–24.678.

39. Saliminia A, Nguyen NT, Chin SL, Vallée R. Densification of silica glass induced by 0.8 and 1.5 μm intense femtosecond laser pulses. Journal of Applied Physics. 2006; 99(9): 0–5.

40. Ferrer A, Jaque D, Siegel J, De La Cruz AR, Solis J. Origin of the refractive index modification of femtosecond laser processed doped phosphate glass. Journal of Applied Physics. 2011; 109(9): 1–5.

41. LLS ROWIAK LaserLabSolutions GmbH. [cited 13 January 2017]. Available from: http://www.lls-rowiak.de/index.php?id=19/.

42. Contamac Ltd. [cited 13 January 2017]. Available from: http://www.contamac.com/Products/Hydrophilic/Contaflex-FDA.aspx.

43. Bellucci R. An introduction to intraocular lenses: Material, optics, haptics, design, and aberration. Cataract. 2013; 3: 38–55.

44. Xu L. Femtosecond laser processing of ophthalmic materials and ocular tissues: a novel approach for non-invasive vision correction. Doctoral Dissertation, University of Rochester. 2013.

45. Kniggendorf AK, Meinhardt-Wollweber M, Yuan X, Roth B, Seifert A, Fertig N, Zeilinger C. Temperature-sensitive gating of hCx26: high-resolution Raman spectroscopy sheds light on conformational changes. Biomedical Optics Express. 2014; 5(7): 2054–2065. doi: 10.1364/BOE.5.002054 25071948

46. Kniggendorf AK, Nogueira R, Kelb C, Schadzek P, Meinhardt-Wollweber M, Ngezahayo A, Roth B. Confocal Raman microscopy and fluorescent in situ hybridization: A complementary approach for biofilm analysis. Chemosphere. 2016; 161: 112–118. doi: 10.1016/j.chemosphere.2016.06.096 27423128

47. Schmidt U, Hild S, Ibach W, Hollricher O. Characterization of thin polymer films on the nanometer scale with confocal Raman AFM. Macromolecular Symposia. 2005; 230: 133–143.

48. Schaffer CB. Interaction of Femtosecond Laser Pulses with Transparent Materials. Doctoral Dissertation, Harvard University. 2001.

49. Hering E, Martin R, Stohrer M. Physik fuer Ingenieure. 9 th ed. Springer-Verlag; 2004.

50. Tél A, Bauer RA, Varga Z, Zrínyi M. Heat conduction in poly(N-isopropylacrylamide) hydrogels. International Journal of Thermal Sciences. 2014; 85: 47–53.

51. Hammer DX, Eiserer R, Noojin GD, Boppart SA, Kennedy P, Roach WP. Temperature dependence of laser induced breakdown. Proc. of SPIE. 1994; 2134A: 24–27.

52. Mauclair C, Mermillod-Blondin A, Huot N, Audouard E, Stoian R. Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction. Optics Express. 2008; 16(8): 5481–5492. doi: 10.1364/oe.16.005481 18542651

53. Hnatovskya C, Taylor RS, Simova E, Bhardwaj VR, Rayner DM, Corkum PB. High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations. Journal of Applied Physics. 2005; 98(1): 1–5.

54. Mayer WJ, Klaproth OK, Hengerer FH, Kohnen T. Femtosekundenlaser für die Katarakt- und refraktive Linsenchirurgie. Der Ophthalmologe. 2014; 111(1): 69–73. doi: 10.1007/s00347-013-2975-y 24448813

55. Riau AK, Liu YC, Lwin NC, Ang HP, Tan NYS, Yam GHF, et al. Mehta, Comparative Study of nJ- and μJ-Energy Level Femtosecond Lasers: Evaluation of Flap Adhesion Strength, Stromal Bed Quality, and Tissue Responses. Investigative Ophthalmology and Visual Science. 2014; 55(5): 3186–3194. doi: 10.1167/iovs.14-14434 24764066

56. Salomao MQ, Wilson SE. Femtosecond laser in laser in situ keratomileusis. Journal of Cataract and Refractive Surgery. 2010; 36(6): 1024–1032. doi: 10.1016/j.jcrs.2010.03.025 20494777


Článok vyšiel v časopise

PLOS One


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#