#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Visual detection of time-varying signals: Opposing biases and their timescales


Autoři: Urit Gordon aff001;  Shimon Marom aff001;  Naama Brenner aff002
Působiště autorů: Faculty of Medicine, Technion, Haifa, Israel aff001;  Faculty of Chemical Engineering, Technion, Haifa, Israel aff002;  Network Biology Research Lab, Lorry Lockey Interdisciplinary Center for Life Science and Engineering, Technion, Haifa, Israel aff003
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0224256

Souhrn

Human visual perception is a complex, dynamic and fluctuating process. In addition to the incoming visual stimulus, it is affected by many other factors including temporal context, both external and internal to the observer. In this study we investigate the dynamic properties of psychophysical responses to a continuous stream of visual near-threshold detection tasks. We manipulate the incoming signals to have temporal structures with various characteristic timescales. Responses of human observers to these signals are analyzed using tools that highlight their dynamical features as well. Our experiments show two opposing biases that shape perceptual decision making simultaneously: positive recency, biasing towards repeated response; and adaptation, entailing an increased probability of changed response. While both these effects have been reported in previous work, our results shed new light on the timescales involved in these effects, and on their interplay with varying inputs. We find that positive recency is a short-term bias, inversely correlated with response time, suggesting it can be compensated by afterthought. Adaptation, in contrast, reflects trends over longer times possibly including multiple previous trials. Our entire dataset, which includes different input signal temporal structures, is consistent with a simple model with the two biases characterized by a fixed parameter set. These results suggest that perceptual biases are inherent features which are not flexible to tune to input signals.

Klíčová slova:

Sensory perception – Curve fitting – Vision – Psychophysics – Decision making – Psychometrics – Experimental design – Conditioned response


Zdroje

1. Faisal AA, Selen LPJ, Wolpert DM. Noise in the nervous system. Nat Rev Neurosci. 2008;9(april):292–303. doi: 10.1038/nrn2258 18319728

2. Sanabria D, Correa Á, Lupiáñez J, Spence C. Bouncing or streaming? Exploring the influence of auditory cues on the interpretation of ambiguous visual motion. Exp Brain Res. 2004;157(4):537–41. doi: 10.1007/s00221-004-1993-z 15241576

3. Wu J, Xu H, Dayan P, Qian N. The role of background statistics in face adaptation. J Neurosci. 2009;29(39):12035–12044. doi: 10.1523/JNEUROSCI.2346-09.2009 19793962

4. Marom S, Wallach A. Relational Dynamics in Perception: Impacts on Trial-to-trial Variation. Front Comput Neurosci. 2011;5(April):16. doi: 10.3389/fncom.2011.00016 21647414

5. Howarth CI, Bulmer MG. Non-random sequences in visual threshold experiments. Q J Exp Psychol. 1956;8(4):163–171. doi: 10.1080/17470215608416816

6. Fründ I, Wichmann FA, Macke JH. Quantifying the effect of intertrial dependence on perceptual decisions. J Vis. 2014;14(7):1–16.

7. Magnussen S, Greenlee MW. The psychophysics of perceptual memory. Psychol Res. 1999;62(2):81–92. doi: 10.1007/s004260050043 10472196

8. Freiberg AD. ‘Fluctuations of Attention’ with Weak Tactual Stimuli: A Study in Perceiving. Am J Psychol. 1937 oct;49(1):23–36. doi: 10.2307/1416049

9. Raviv O, Ahissar M, Loewenstein Y. How Recent History Affects Perception: The Normative Approach and Its Heuristic Approximation. PLoS Comput Biol. 2012;8(10). doi: 10.1371/journal.pcbi.1002731 23133343

10. Gepshtein S, Kubovy M. Stability and change in perception: spatial organization in temporal context. Exp Brain Res. 2005 jan;160(4):487–495. doi: 10.1007/s00221-004-2038-3 15517224

11. Abrahamyan A, Silva LL, Dakin SC, Carandini M, Gardner JL. Adaptable history biases in human perceptual decisions. Proc Natl Acad Sci. 2016 jun;113(25):E3548–E3557. doi: 10.1073/pnas.1518786113 27330086

12. Barack DL, Gold JI. Temporal trade-offs in psychophysics. Curr Opin Neurobiol. 2016 apr;37:121–125. doi: 10.1016/j.conb.2016.01.015 26921829

13. Parducci A. Sequential effects in judgment. Psychol Bull. 1964;61(3):163–167. doi: 10.1037/h0048411 14130252

14. Lockhead GR. Identification and the form of multidimensional discrimination space. J Exp Psychol. 1970;85(1):1–10. doi: 10.1037/h0029508 5458322

15. Anderson HN. Test of adaptation-level theory as an explanation of a recency effect in psychophysical integration. J Exp Psychol. 1971;87(1):57–63. doi: 10.1037/h0030151 5541563

16. Cross DV. Sequential dependencies and regression in psychophysical judgments. Percept Psychophys. 1973;14(3):547–552. doi: 10.3758/BF03211196

17. Snyder JS, Schwiedrzik CM, Vitela AD, Melloni L. How previous experience shapes perception in different sensory modalities. Front Hum Neurosci. 2015;9:594. doi: 10.3389/fnhum.2015.00594 26582982

18. Gibson JJ, Radner M. Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies. J Exp Psychol. 1937;20(5):453–467. doi: 10.1037/h0059826

19. Chopin A, Mamassian P. Predictive Properties of Visual Adaptation; 2012.

20. Holland MK, Lockhead GR. Sequential effects in absolute judgments of loudness. Percept {&} Psychophys. 1968 nov;3(6):409–414. doi: 10.3758/BF03205747

21. Ward LM. Repeated magnitude estimations with a variable standard: Sequential effects and other properties. Percept {&} Psychophys. 1973 jun;13(2):193–200. doi: 10.3758/BF03214126

22. Duncan Luce R, Nosofsky RM, Green DM, Smith AF. The bow and sequential effects in absolute identification. Percept Psychophys. 1982;32(5):397–408. doi: 10.3758/BF03202769

23. Verplanck WS, Collier GH, Cotton JW. Nonindependence of successive responses in measurements of the visual threshold. J Exp Psychol, Am Psychol Assoc. 1952;44(4):273. doi: 10.1037/h0054948

24. Blackwell HR. Studies of Psychophysical Methods for Measuring Visual Thresholds. J Opt Soc Am. 1952 sep;42(9):606. doi: 10.1364/josa.42.000606 13000567

25. Pollack I. Intensity Discrimination Thresholds under Several Psychophysical Procedures. J Acoust Soc Am. 1954;26(6):1056. doi: 10.1121/1.1907448

26. Mcgill WJ. Serial effects in auditory threshold judgments. J Exp Psychol. 1957;5(53):297. doi: 10.1037/h0044268

27. Parducci A, Sandusky A. Distribution and sequence effects in judgment. J Exp Psychol. 1965;69(5):450–459. doi: 10.1037/h0021719 14285599

28. Fischer J, Whitney D. Serial dependence in the perception of faces. Curr Biol. 2014;24(21):2569–2574. doi: 10.1016/j.cub.2014.09.025 25283781

29. Akaishi R, Umeda K, Nagase A, Sakai K. Autonomous Mechanism of Internal Choice Estimate Underlies Decision Inertia. Neuron. 2014;81(1):195–206. doi: 10.1016/j.neuron.2013.10.018 24333055

30. Braun A, Urai AE, Donner TH. Adaptive History Biases Result from Confidence-weighted Accumulation of Past Choices. J Neurosci. 2018;38(10):2189–17. doi: 10.1523/JNEUROSCI.2189-17.2017

31. Benda J, Herz AVM. A Universal Model for Spike-Frequency Adaptation. Neural Comput. 2003;15(11):2523–2564. doi: 10.1162/089976603322385063 14577853

32. Maus GW, Chaney W, Liberman A, Whitney D. The challenge of measuring long-term positive aftereffects. Curr Biol. 2013 may;23(10):R438–R439. doi: 10.1016/j.cub.2013.03.024 23701683

33. Schwiedrzik CM, Ruff CC, Lazar A, Leitner FC, Singer W, Melloni L. Untangling perceptual memory: hysteresis and adaptation map into separate cortical networks. Cereb cortex. 2014 may;24(5):1152–1164. doi: 10.1093/cercor/bhs396 23236204

34. Pape AA, Siegel M. Motor cortex activity predicts response alternation during sensorimotor decisions. Nat Commun. 2016 oct;7:13098. doi: 10.1038/ncomms13098 27713396

35. Laughlin S. A simple coding procedure enhances a neuron’s information capacity; 1981.

36. Brenner N, Bialek W, de Ruyter van Steveninck R. Adaptive Rescaling Maximizes Information Transmission. Neuron. 2000;26(3):695–702. doi: 10.1016/s0896-6273(00)81205-2 10896164

37. Gilden DL, Thornton T, Mallon MW. 1/f noise in human cognition. Science. 1995;267(5205):1837–1839.

38. Lamme VA, Roelfsema PR. The distinct modes of vision offered by feedforward and recurrent processing. Trends in neurosciences. 2000;23(11):571–579. doi: 10.1016/s0166-2236(00)01657-x 11074267

39. Fritsche M, Mostert P, de Lange FP. Opposite Effects of Recent History on Perception and Decision. Curr Biol. 2017 feb;27(4):590–595. doi: 10.1016/j.cub.2017.01.006 28162897


Článok vyšiel v časopise

PLOS One


2019 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#