Adsorption of oxytetracycline on kaolinite

Autoři: Yali Song aff001;  Ebenezer Ampofo Sackey aff001;  He Wang aff001;  Hua Wang aff001
Působiště autorů: School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China aff001;  Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China aff002
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0225335


As antibiotic contamination increases in wastewater and aqueous environments, the reduction of antibiotics has become a pertinent topic of research regarding water treatment. Clay minerals, such as smectite or kaolinite, are important adsorbents used in water treatment, and sufficient removal of antibiotics by clay minerals is expected. In this study, the adsorption of oxytetracycline (OTC) on kaolinite was investigated. The experimental data of OTC adsorption on kaolinite fit the pseudo-second-order kinetics model well (R2>0.98). After 24 h, adsorption equilibrium of OTC on kaolinite was reached. The Langmuir model was better fitting with the adsorption isotherms generated from experimental data and OTC adsorption occurred on the external surface of kaolinite. The analysis of several thermodynamic parameters indicated that the adsorption of OTC on kaolinite was spontaneous and thermodynamically favorable. With the increase of the pH of a solution, the adsorption capacity increased and then decreased. The adsorption coefficient (Kd) of 102–103 were obtained for adsorption process of OTC on kaolinite.

Klíčová slova:

Antibiotics – Water pollution – Thermodynamics – Sorption – Adsorption – Fourier transform infrared spectroscopy – Isotherms – Cation exchange capacity


1. Huang Y, Liu Y, Du P, Zeng L, Mo C, Li Y, et al. Occurrence and distribution of antibiotics and antibiotic resistant genes in water and sediments of urban rivers with black-odor water in Guangzhou, South China. Sci Total Environ. 2019; 670:170–180. doi: 10.1016/j.scitotenv.2019.03.168 30903891

2. Huijbers P M C, Flach C-F, Joakim Larsson D G. A conceptual framework for the environmental surveillance of antibiotics and antibiotic resistance. Environ Int. 2019; 130:1–10.

3. Zhao F, Yang L, Chen L, Xiang Q. Soil contamination with antibiotics in a typical peri-urban area in eastern China: Seasonal variation, risk assessment, and microbial responses. J Environ Sci. 2019; 79:200–212.

4. Jia J, Guan Y, Cheng M, Chen H, Wang Z. Occurrence and distribution of antibiotics and antibiotic resistance genes in Ba River, China. Total Environ. 2018; 642:1136–1144.

5. Liu X, Lu S, Guo W, Xi B, Wang W. Antibiotics in the aquatic environments: A review of lakes, China. Sci Total Environ. 2018; 627:1195–1208. doi: 10.1016/j.scitotenv.2018.01.271 30857084

6. Iakovides I C, Michael-Kordatou I, Moreira N F F, Ribeiro A R, Fernandes T, Pereira M F R, et al. Continuous ozonation of urban wastewater: Removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity. Water Res. 2019; 159:333–347. doi: 10.1016/j.watres.2019.05.025 31108362

7. Li S, Shi W, You M, Zhang R, Ni J. Antibiotics in water and sediments of Danjiangkou Reservoir, China: Spatiotemporal distribution and indicator screening. Environ Pollut. 2019; 246:435–442. doi: 10.1016/j.envpol.2018.12.038 30579212

8. Hoa P T P, Managaki S, Nakada N, Takada H, Suzuki S. Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam. Sci Total Environ. 2011; 409:2894–2901. doi: 10.1016/j.scitotenv.2011.04.030 21669325

9. Wang X, Shen J, Kang J, Zhao X, Chen Z. Mechanism of oxytetracycline removal by aerobic granular sludge in SBR. Water Res. 2019; 161:308–318. doi: 10.1016/j.watres.2019.06.014 31203036

10. Ding H, Wu Y, Zhang W, Zhong J, Fang Y. Occurrence, distribution, and risk assessment of antibiotics in the surface water of Poyang Lake, the largest freshwater lake in China. Chemosphere. 2017; 184:137–147. doi: 10.1016/j.chemosphere.2017.05.148 28586654

11. Charuaud L, Jarde E, Jaffrezic A, Thomas M-F, Bot B L. Veterinary pharmaceutical residues from natural water to tap water: Sales, occurrence and fate. J Hazard Mater. 2019; 361:169–186. doi: 10.1016/j.jhazmat.2018.08.075 30179788

12. Espíndola C J, Szymański K, Cristóvão R O, Mendes A, Vilar V JP, Mozia S. Performance of hybrid systems coupling advanced oxidation processes and ultrafiltration for oxytetracycline removal. Catal Today. 2019; 328:274–280.

13. Li N, Zhou L, Jin X, Owens G, Chen Z. Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework. J Hazard Mater. 2019; 366:563–572. doi: 10.1016/j.jhazmat.2018.12.047 30572296

14. Zhang F, Yue Q, Gao Y, Gao B, Xu X, Ren Z, et al. Application for oxytetracycline wastewater pretreatment by Fenton iron mud based cathodic-anodic-electrolysis ceramic granular fillers. Chemosphere. 2017; 182:483–490. doi: 10.1016/j.chemosphere.2017.05.058 28521163

15. Acosta R, Fierro V, Yuso A M, Nabarlatz D, Celzard A. Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char. Chemosphere. 2016; 149:168–176. doi: 10.1016/j.chemosphere.2016.01.093 26855221

16. Wang H, Fang C, Wang Q, Chu Y, Song Y, Chen Y, et al. Sorption of tetracycline on biochar derived from rice straw and swine manure. RSC Adv. 2018; 8: 6260–16268.

17. Wang J, Hu J, Zhang S. Studies on the sorption of tetracycline onto clays and marine sediment from seawater. J Colloid Interf Sci. 2010;349:578–582.

18. Li Z, Chang P, Jean J, Jiang W, Wang C. Interaction between tetracycline and smectite in aqueous solution. J Colloid Interf Sci. 2010; 341:311–319.

19. Ma J, Lei Y, Khan M A, Wang F, Chu Y, Xia M, et al. Adsorption properties, kinetics & thermodynamics of tetracycline on carboxymethyl-chitosan reformed montmorillonite. Int J Biol Macromol. 2019; 124:557–567. doi: 10.1016/j.ijbiomac.2018.11.235 30500496

20. Figueroa R A, Leonar A, Mackay A A. Modeling tetracycline antibiotic sorption to clays. Environ Sci Technol. 2004; 38(2):476–483. doi: 10.1021/es0342087 14750722

21. Zhao Y, Geng J, Wang X, Gu X, Gao S. Tetracycline adsorption on kaolinite: pH, metal cations and humic acid effects. Ecotoxicology. 2011; 20:1141–1147. doi: 10.1007/s10646-011-0665-6 21461925

22. Li Z, Schulz L, Ackley C, Fenske N. Adsorptionof tetracycline on kaolinite with pH-dependent surface charges. J Colloid Interf Sci. 2010; 351:254–260.

23. Ho Y-S. Review of second-order models for adsorption systems. J Hazard Mater. 2006; 136(3):681–689. doi: 10.1016/j.jhazmat.2005.12.043 16460877

24. Wu Q, Li Z, Hong H. Adsorption of the quinolone antibiotic nalidixic acid onto montmorillonite and kaolinite. Appl clay science. 2013; 74:66–73.

25. Harja M, Ciobanu G. Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite. Sci Total Environ. 2018; 628–629: 36–43. doi: 10.1016/j.scitotenv.2018.02.027 29428858

26. Jia M, Wang F, Bian Y, Jin X, Song Y, Kengara F O, et al. Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar. Bioresour Technol. 2013; 136:87–93. doi: 10.1016/j.biortech.2013.02.098 23567668

27. Ma C, Eggleton R A. Cation exchange capacity of kaolinite. Clay Clay Miner. 1999; 47(2):174–180.

28. Parolo M E, Avena M J, Pettinari G, Zajonkovsky I, Valles J M, Baschini M T. Antimicrobial properties of tetracycline and minocycline- montmorillonites. Appl Clay Sci. 2010; 49(3):194–199.

29. Parolo M E, Savini M C, Valles J M, Baschini M T, Avena M J. Tetracycline adsorption on montmorillonite: pH and ionic strength effects. Appl Clay Sci. 2008; 40(1–4):179–186.

30. Zhao Y, Geng J, Wang X, Gu X, Gao S. Adsorption of tetracycline onto goethite in the presence of metal cation and humic substances. Journal of Colloid and Interface Science. 2011; 361:247–251. doi: 10.1016/j.jcis.2011.05.051 21664620

Článok vyšiel v časopise


2019 Číslo 11