#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Agricultural impacts on streams near Nitrate Vulnerable Zones: A case study in the Ebro basin, Northern Spain


Autoři: Rubén Ladrera aff001;  Oscar Belmar aff002;  Rafael Tomás aff001;  Narcís Prat aff003;  Miguel Cañedo-Argüelles aff003
Působiště autorů: Food and Agriculture Department, Science and Technology Complex, University of La Rioja, Logroño, La Rioja, Spain aff001;  Marine and Continental Waters Program, IRTA, Sant Carles de la Ràpita, Catalonia, Spain aff002;  Freshwater Ecology, Hydrology and Management Group (FEHM), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l'Aigua (IdRA), University of Barcelona, Catalonia, Spain aff003
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0218582

Souhrn

Agricultural intensification during the last century has caused river degradation across Europe. From the wide range of stressors derived from agricultural activities that impact rivers, diffuse agricultural pollution has received most of the attention from managers and scientists. The aim of this study was to determine the main stressors exerted by intensive agriculture on streams around Nitrate Vulnerable Zones (NVZs), which are areas of land that drain into waters polluted by nitrates according to the European Nitrate Directive (91/676/EEC). The study area was located in the NW of La Rioja (Northern Spain), which has some of the highest nitrate concentrations within the Ebro basin. The relationships between 40 environmental variables and the taxonomic and functional characteristics of the macroinvertebrate assemblages (which are useful indicators of water quality) were analyzed in 11 stream reaches differentially affected by upstream agricultural activity. The streams affected by a greater percentage of agricultural land cover in the surrounding catchment had significantly higher nitrate concentrations than the remaining sites. However, hydromorphological alteration (i.e. channel simplification, riparian forest and habitat degradation), which is closely linked to agricultural practices, was the main factor affecting macroinvertebrate assemblages. We suggest that “good agricultural practices” should be implemented in streams affected by NVZs to reverse stream degradation, in concordance with the European Water Framework Directive (WFD).

Klíčová slova:

Taxonomy – Agriculture – Water pollution – Forests – Habitats – Nitrates – Sediment – Rivers


Zdroje

1. Flávio HM, Ferreira P, Formigo N, Svendsen JC. Reconciling agriculture and stream restoration in Europe: a review relating to the EU Water Framework Directive. Sci Total Environ. 2017;596:378–95. doi: 10.1016/j.scitotenv.2017.04.057 28448914

2. IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Advance Unedited Versión. 2019 May 6.

3. Haas MB, Guse B, Fohrer N. Assessing the impacts of Best Management Practices on nitrate pollution in an agricultural dominated lowland catchment considering environmental protection versus economic development. J Environ Manage. 2017;196:347–64. doi: 10.1016/j.jenvman.2017.02.060 28324851

4. Allan JD. Landscaps and Riverscapes: The Influence of Land Use on Stream Ecosystems. Annu Rev Ecol Evol Syst. 2004;35:257–84.

5. Arauzo M, Valladolid M. Drainage and N-leaching in alluvial soils under agricultural land uses: Implications for the implementation of the EU Nitrates Directive. Agric Ecosyst Environ. 2013;179:94–107.

6. Voulvoulis N, Arpon KD, Giakoumis T. The EU Water Framework Directive: from great expectations to problems with implementation. Sci Total Environ. 2017;575:358–66. doi: 10.1016/j.scitotenv.2016.09.228 27744201

7. Ector L, Rimet F. Using bioindicators to assess rivers in Europe: An overview. In: Lek S, Scardi M, Verdonschot PFM, Descy JP, Park YS, editors. Modelling community structure in freshwater ecosystems. Berlin: Springer; 2005. p. 7–19.

8. Bonada N, Prat N, Resh VH, Statzner B. Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol. 2006;51:495–523. doi: 10.1146/annurev.ento.51.110104.151124 16332221

9. Birk S, Bonne W, Borja A, Brucet S, Courrat A, Poikane S, et al. Three hundred ways to assess Europe’s surface waters: An almost complete overview of biological methods to implement the Water Framework Directive. Ecol Indic. 2012;18:31–41.

10. Genito D, Gburek WJ, Sharpley AN. Response of stream macroinvertebrates to agricultural land cover in a small watershed. J Freshw Ecol. 2002;17(1):109–19.

11. Song MY, Leprieur F, Thomas A, Lek-Ang S, Chon TS, Lek S. Impact of agricultural land use on aquatic insect assemblages in the Garonne river catchment (SW France). Aquat Ecol. 2009;43(4):999–1009.

12. Piscart C, Genoel R, Doledec S, Chauvet E, Marmonier P. Effects of intense agricultural practices on heterotrophic processes in streams. Environ Pollut. 2009;157(3):1011–18. doi: 10.1016/j.envpol.2008.10.010 19028003

13. Magbanua FS, Townsend CR, Blackwell GL, Phillips N, Matthaei CD. Responses of stream macroinvertebrates and ecosystem function to conventional, integrated and organic farming. J Appl Ecol. 2010;47(5):1014–25.

14. Moore AA, Palmer MA. Invertebrate Biodiversity in Agricultural and Urban Headwater Streams: Implications for Conservation and Management. Ecol Appl. 2012;15(4):1169–77.

15. Wagenhoff A, Townsend CR, Matthaei CD. Macroinvertebrate responses along broad stressor gradients of deposited fine sediment and dissolved nutrients: A stream mesocosm experiment. J Appl Ecol. 2012;49(4):892–902.

16. Statzner B, Dolédec S, Hugueny B. Biological trait composition of European stream invertebrate communities: assessing the effects of various trait filter types. Ecography. 2004;27(4):470–88.

17. Statzner B, Bonada N, Dolédec S. Conservation of taxonomic and biological trait diversity of European stream macroinvertebrate communities: a case for a collective public database. Biodivers Conserv. 2007;16(12):3609–32.

18. Camargo JA, Alonso A, Salamanca A. Nitrate toxicity to aquatic animals: A review with new data for freshwater invertebrates. Chemosphere. 2005;58(9):1255–67. doi: 10.1016/j.chemosphere.2004.10.044 15667845

19. Camargo JA, Alonso Á. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ Int. 2006;32(6):831–49. doi: 10.1016/j.envint.2006.05.002 16781774

20. Liess A, Le Gros A, Wagenhoff A, Townsend CR, Matthaei CD. Landuse intensity in stream catchments affects the benthic food web: consequences for nutrient supply, periphyton C:nutrient ratios, and invertebrate richness and abundance. Freshw Sci. 2012;31(3):813–24.

21. Pearson CE, Ormerod SJ, Symondson WOC, Vaughan IP. Resolving large-scale pressures on species and ecosystems: propensity modelling identifies agricultural effects on streams. J Appl Ecol. 2016;53(2):408–17. doi: 10.1111/1365-2664.12586 27867215

22. Harding JS, Young RG, Hayes JW, Shearer KA, Stark JD. Changes in Agricultural Intensity and River Health Along a River Continuum. Freshw Biol. 1999;(42):345–57.

23. Rixen T, Baum A, Sepryani H, Pohlmann T, Jose C, Samiaji J. Dissolved oxygen and its response to eutrophication in a tropical black water river. J Environ Manage. 2010;91(8):1730–7. doi: 10.1016/j.jenvman.2010.03.009 20435403

24. Jacobsen D, Rostgaard S, Vásconez JJ. Are macroinvertebrates in high altitude streams affected by oxygen deficiency? Freshw Biol. 2003;48(11):2025–32.

25. Magbanua FS, Townsend CR, Hageman KJ, Matthaei CD. Individual and combined effects of fine sediment and the herbicide glyphosate on benthic macroinvertebrates and stream ecosystem function. Freshw Biol. 2013;58(8):1729–44.

26. Piggott JJ, Lange K, Townsend CR, Matthaei CD. Multiple stressors in agricultural streams: a mesocosm study of interactions among raised water temperature, sediment addition and nutrient enrichment. PLoS One. 2012;7(11):e49873. doi: 10.1371/journal.pone.0049873 23185471

27. Burdon FJ, McIntosh AR, Harding JS. Habitat loss drives threshold response of benthic invertebrate communities to deposited sediment in agricultural streams. Ecol Appl. 2013;23(5):1036–47. doi: 10.1890/12-1190.1 23967573

28. Larsen S, Vaughan IP, Ormerod SJ. Scale-dependent effects of fine sediments on temperate headwater invertebrates. Freshw Biol. 2009;54(1):203–19.

29. Dolédec S, Phillips N, Scarsbrook M, Riley RH, Townsend CR. Comparison of structural and functional approaches to determining landuse effects on grassland stream invertebrate communities. J North Am Benthol Soc. 2006;25(1):44–60.

30. Lange K, Townsend CR, Matthaei CD. Can biological traits of stream invertebrates help disentangle the effects of multiple stressors in an agricultural catchment? Freshw Biol. 2014;59(12):2431–46.

31. Murphy JF, Jones JI, Arnold A, Duerdoth CP, Pretty JL, Naden PS, et al. Can macroinvertebrate biological traits indicate fine‐grained sediment conditions in streams? River Res Appl. 2017;33(10):1606–17.

32. Burdon FJ, McIntosh AR, Harding JS. Mechanisms of trophic niche compression: evidence from landscape disturbance. bioRxiv. 2018;329623.

33. Rabení CF, Doisy KE, Zweig LD. Stream invertebrate community functional responses to deposited sediment. Aquat Sci. 2005;67(4):395–402.

34. Rodríguez-Martín JA, Arias ML, Grau-Corbí JM. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Environ Pollut. 2006;144(3):1001–12. doi: 10.1016/j.envpol.2006.01.045 16580763

35. Mondy CP, Muñoz I, Dolédec S. Life-history strategies constrain invertebrate community tolerance to multiple stressors: A case study in the Ebro basin. Sci Total Environ. 2016;572:196–206. doi: 10.1016/j.scitotenv.2016.07.227 27498381

36. ASTM. Standard Methods for the Examination of Water and Wastewater 19th ed. Washington, DC.: American Public Health Association, American Water Works Association, and Water Environment Federation (APHA, AWWA, and WEF); 1995.

37. Munné A, Prat N, Solá C, Bonada N, Rieradevall M. A simple field method for assessing the ecological quality of riparian habitat in rivers and streams: QBR index. Aquat Conserv Mar Freshw Ecosyst. 13(2):147–63.

38. Pardo I, Álvarez M, Casas J, Moreno JL, Vivas S, Bonada N, et al. El hábitat de los ríos mediterráneos. Diseño de un índice de diversidad de hábitat. Limnetica. 2002;21(3–4):115–33.

39. Alba-Tercedor J, Jáimez-Cuéllar P, Álvarez M, Avilés J, Bonada N, Casas J, et al. Caracterización del estado ecológico de ríos mediterráneos ibéricos mediante el índice IBMWP (antes BMWP’). Limnetica. 2002;21(3–4):175–85.

40. Munné A, Prat N. Use of macroinvertebrate-based multimetric indices for water quality evaluation in Spanish Mediterranean rivers: an intercalibration approach with the IBMWP index. Hydrobiologia. 2009;628(1):203–25.

41. Munné A. Análisis de métriques d´avaluació de la qualitat de l´aigua mitjançant l´us de macroinvertebrats cm a bioindicadors y ls seva resposta a les alteracions antrópiques i a la tipologia fluvial en ecosistemes mediterranis. Tesis Doctoral. Departament d`Ecologia. Universitat de Barcelona; 2009.

42. Bonada N, Prat N, Munné A, Plans M, Solà C, Álvarez M, et al. Intercalibración de la metodología GUADALMED. Selección de un protocolo de muestreo para la determinación del estado ecológico de los ríos mediterráneos. Limnetica. 2002;21(3–4):13–33.

43. Usseglio-Polatera P, Bournaud M, Richoux P, Tachet H. Biological and ecological traits of benthic freshwater macroinvertebrates: Relationships and definition of groups with similar traits. Freshw Biol. 2000;43(2):175–205.

44. Tachet H, Richoux P, Bournaud M, Usseglio-Polaterra P. Invertébrés d’eau douce. Systématique, biologie, écologie. Paris: CNRS Editions; 2006.

45. Elliott JM. The Ecology of Riffle Beetles (Coleoptera: Elmidae). Freshw Rev. 2008;1(2):189–203.

46. Hauer FR, Resh VH. Benthic Macroinvertebrates. In: Hauer FR, Lamberti GA, editors. Methods in Stream Ecology. San Diego: Academic Press; 1996. p. 339–65.

47. Belmar O, Bruno D, Guareschi S, Mellado-Díaz A, Millán A, Velasco J. Functional responses of aquatic macroinvertebrates to flow regulation are shaped by natural flow intermittence in Mediterranean streams. Freshw Biol. 2019;64(5):1064–77.

48. Schmera D, Heino J, Podani J, Erős T, Dolédec S. Functional diversity: a review of methodology and current knowledge in freshwater macroinvertebrate research. Hydrobiologia. 2017;787(1):27–44.

49. Hevia V, Martín-López B, Palomo S, García-Llorente M, de Bello F, González JA. Trait-based approaches to analyze links between the drivers of change and ecosystem services: Synthesizing existing evidence and future challenges. Ecol Evol. 2017;7(3):831–44. doi: 10.1002/ece3.2692 28168020

50. Chevenet F, Dolédec S, Chessel D. A fuzzy coding approach for the analysis of long-term ecological data. Freshw Biol. 1994;31:295–309.

51. Clarke KR, Gorley RN. PRIMER v6: User manual/tutorial. Plymouth. United Kingdom: PRIMER-E Ltd.; 2006.

52. Dufrêne M, Legendre P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr. 1997;67:345–66.

53. Kampstra P. Beanplot: A Boxplot Alternative for Visual Comparison of Distributions. J Stat Softw. 2008;28(1):1–9.

54. Anderson MJ, Gorley RN, Clarke KR. PRIMER + for PERMANOVA: Guide to Software and Statistical Methods. Plymouth, United Kingdom: PRIMER-E. Ltd; 2008.

55. Akaike H. Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csake F, editors. Second International Symposium on Information Theory. Budapest: Akademiai Kiado; 1973. p. 267–281.

56. Bogan MT, Boersma KS, Lytle DA. Resistance and resilience of invertebrate communities to seasonal and supraseasonal drought in arid-land headwater streams. Freshw Biol. 2014;60(12):2547–58.

57. Cheng SY, Chen JC. Study on the oxyhemocyanin, deoxyhemocyanin, oxygen affinity and acid-base balance of Marsupenaeus japonicus following exposure to combined elevated nitrite and nitrate. Aquat Toxicol. 2002;61(3–4):181–93. 12359389

58. Jensen FB. Uptake, elimination and effects of nitrite and nitrate in freshwater crayfish (Astacus astacus). Aquat Toxicol. 1996;34:95–104.

59. Finlay JC. Stream size and human influences on ecosystem production in river networks. Ecosphere. 2011;2(8):art 87.

60. Shields FD, Langendoen EJ, Doyle MW. Adapting existing models to examinate effects of agricultural conservation programs on stream habitat quality. J Am Water Resour Assoc. 2006;42:25–33.

61. Beermann AJ, Elbrecht V, Karnatz S, Ma L, Matthaei CD, Piggott JJ, et al. Multiple-stressor effects on stream macroinvertebrate communities: A mesocosm experiment manipulating salinity, fine sediment and flow velocity. Sci Total Environ. 2018;610:961–71. doi: 10.1016/j.scitotenv.2017.08.084 28830056

62. Gieswein A, Hering D, Lorenz AW. Development and validation of a macroinvertebrate-based biomonitoring tool to assess fine sediment impact in small mountain streams. Sci Total Environ. 2019;652:1290–301. doi: 10.1016/j.scitotenv.2018.10.180 30586815

63. Brown LE, Aspray KL, Ledger ME, Mainstone C, Palmer SM, Wilkes M, et al. Sediment deposition from eroding peatlands alters headwater invertebrate biodiversity. Glob Chang Biol. 2019;25(2):602–19. doi: 10.1111/gcb.14516 30414307

64. Sánchez-Morales M, Sabater F, Muñoz I. Effects of urban wastewater on hyporheic habitat and invertebrates in Mediterranean streams. Sci Total Environ. 2018;642:937–45. doi: 10.1016/j.scitotenv.2018.06.132 29929145

65. Jones JI, Murphy JF, Collins AL, Sear DA, Naden PS, Armitage PD. The impact of fine sediment on macro‐invertebrates. River Res Appl. 2012;28(8):1055–71.

66. Ebro Hydrographic Confederation. Plan Hidrológico del Ebro. Anexo 4.1. Estado y objetivos medioambientales de las masas de agua y fichas justificativas. Zaragoza, 2015.

67. Houlden V. Hydromorphology, the forgotten facet of the Water Framework Directive. HR Wallinford. 2018 Sep 13.

68. Estévez E, Rodríguez-Castillo T, González-Ferreras AM, Cañedo-Argüelles M, Barquín J. Drivers of spatio-temporal patterns of salinity in Spanish rivers: a nationwide assessment. Philos Trans R Soc B Biol Sci. 2018;374(1764):20180022.

69. Menduiña J, Ordóñez S, del Cura MG. Geología del yacimiento de glauberita de Cerezo de Rio Tirón (Burgos). Bol Geol Min. 1984;95(1):35–51.

70. Cañedo-Argüelles M, Kefford BJ, Piscart C, Prat N, Schäfer RB, Schulz CJ. Salinisation of rivers: An urgent ecological issue. Environ Pollut. 2013;173:157–67. doi: 10.1016/j.envpol.2012.10.011 23202646

71. Covich AP, Palmer MA, Crowl TA. The role of benthic invertebrate species in freshwater ecosystems: Zoobenthic species influence energy flows and nutrient cycling. Bioscience. 1999;49(2):119–27.

72. Statzner B. Geomorphological implications of engineering bed sediments by lotic animals. Geomorphology. 2012;157–158:49–65.

73. Arauzo M, Valladolid M, Martínez-Bastida JJ. Spatio-temporal dynamics of nitrogen in river-alluvial aquifer systems affected by diffuse pollution from agricultural sources: Implications for the implementation of the Nitrates Directive. J Hydrol. 2011;411(1–2):155–68.

74. Gobierno de La Rioja. Informe sobre la aplicacion de la Directiva 91/676/CEE, relativa a la protección de las aguas contra la contaminación producida por nitratos procedentes de fuentes agrarias, correspondiente al cuatrienio 2012–2015 en la Comunidad Autónoma de La Rioja. Logroño, 2015.

75. Worrall F, Spencer E, Burt TP. The effectiveness of nitrate vulnerable zones for limiting surface water nitrate concentrations. J Hydrol. 2009;370(1–4):21–8.

76. Howden NJK, Burt TP, Worrall F, Whelan MJ. Monitoring fluvial water chemistry for trend detection: Hydrological variability masks trends in datasets covering fewer than 12 years. J Environ Monit. 2011;13(3):514–21. doi: 10.1039/c0em00722f 21347486

77. Weatherhead EK, Howden NJK. The relationship between land use and surface water resources in the UK. Land use policy. 2009;26:243–50.

78. Kay P, Grayson R, Phillips M, Stanley K, Dodsworth A, Hanson A, et al. The effectiveness of agricultural stewardship for improving water quality at the catchment scale: Experiences from an NVZ and ECSFDI watershed. J Hydrol. 2012;422:10–6.


Článok vyšiel v časopise

PLOS One


2019 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#