#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Ecohydrology of urban trees under passive and active irrigation in a semiarid city


Autoři: Anthony M. Luketich aff001;  Shirley A. Papuga aff002;  Michael A. Crimmins aff004
Působiště autorů: Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America aff001;  School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States of America aff002;  Department of Geology, Wayne State University, Detroit, Michigan, United States of America aff003;  Department of Environmental Science, University of Arizona, Tucson, Arizona, United States of America aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0224804

Souhrn

The infiltration of stormwater runoff for use by urban trees is a major co-benefit of green infrastructure for desert cities with limited water resources. However, the effects of this passive irrigation versus regular, controlled moisture inputs, or active irrigation, is largely unquantified. We monitored the ecohydrology of urban mesquite trees (Prosopis spp.) under these contrasting irrigation regimes in semiarid Tucson, AZ. Measurements included soil moisture, sap velocity, canopy greenness, and leaf-area index. We expected both irrigation types to provide additional deep (>20 cm) soil moisture compared to natural conditions, and that trees would depend on this deep moisture for transpiration and phenological activity. Results show that active irrigation supported higher soil moisture throughout the study than passive irrigation. Passive irrigation only provided additional deep moisture when green infrastructure features received impervious runoff from a city street. Sap velocity and greenness were similar under both irrigation types, outside of isolated periods of time. These differences occurred during the extremely wet summer 2017 when passively irrigated trees exhibited a greenness peak, and the dry conditions of spring when actively irrigated trees had higher sap flow and relative greenness. Finally, it was not determined that deep soil moisture had a stronger relationship with mesquite productivity than shallow moisture, but both relationships were stronger in the spring, before summer rains. This study aims to contribute empirical observations of green infrastructure performance for urban watershed management.

Klíčová slova:

Trees – Seasons – Spring – Summer – Urban ecology – Rain – Agricultural irrigation – Deserts


Zdroje

1. Berland A, Shiflett SA, Shuster WD, Garmestani AS, Goddard HC, Herrmann DL, et al. The role of trees in urban stormwater management. Landsc Urban Plan. 2017;162:167–77. doi: 10.1016/j.landurbplan.2017.02.017 30220756

2. Demuzere M, Orru K, Heidrich O, Olazabal E. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. J Environ. 2014;146:107–115

3. Zhao Q, Yang J, Wang Z-H, Wentz E. Assessing the Cooling Benefits of Tree Shade by an Outdoor Urban Physical Scale Model at Tempe, AZ. Urban Sci. 2018;2(1):4.

4. Yang J, Wang ZH. Optimizing urban irrigation schemes for the trade-off between energy and water consumption. Energy Build. 2015;107:335–44.

5. Yang J, Wang ZH. Planning for a sustainable desert city: The potential water buffering capacity of urban green infrastructure. Landsc Urban Plan. 2017;167:339–47.

6. Lancaster B. Rainwater harvesting for drylands and beyond. Volume 1, Guiding principles to welcome rain into your life and landscape. 2006.

7. Kauffman AT, Stropki CL, Mundt A V. Stormwater Irrigation: A comparison of soil moisture at curb cuts with and without rain gardens. Stormwater. 2017.

8. Ebrahimian A, Wadzuk B, Traver R. Evapotranspiration in green stormwater infrastructure systems. Sci Total Environ. 2019;688:797–810. doi: 10.1016/j.scitotenv.2019.06.256 31255818

9. Houdeshel D, Pomeroy C. Storm-Water Bioinfiltration as No-Irrigation Landscaping Alternative in Semiarid Climates. J Irrig Drain Eng. 2014;140(2):06013004.

10. Pataki D, McCarthy H, Litvak E. Transpiration of urban forests in the Los Angeles metropolitan area. Ecological. 2011;21(3):661–677

11. Schuch U, Martin EC. A Study of Irrigation Requirements of Southwestern Landscape Trees. CALS Publ Arch Univ Arizona. 2017

12. Gebert LL, Coutts AM, Tapper NJ. The influence of urban canyon microclimate and contrasting photoperiod on the physiological response of street trees and the potential benefits of water sensitive urban design. Urban For Urban Green. 2019;40:152–64.

13. Szota C, Coutts AM, Thom JK, Virahsawmy HK, Fletcher TD, Livesley SJ. Street tree stormwater control measures can reduce runoff but may not benefit established trees. Landsc Urban Plan. 2018;182:144–55.

14. Scharenbroch BC, Morgenroth J, Maule B. Tree Species Suitability to Bioswales and Impact on the Urban Water Budget. J Environ Qual. 2016;45(1):199. doi: 10.2134/jeq2015.01.0060 26828175

15. Grey V, Livesley SJ, Fletcher TD, Szota C. Establishing street trees in stormwater control measures can double tree growth when extended waterlogging is avoided. Landsc Urban Plan. 2018;178:122–9.

16. Grey V, Livesley SJ, Fletcher TD, Szota C. Tree pits to help mitigate runoff in dense urban areas. J Hydrol. 2018; 565:400–410.

17. McCarthy HR, Pataki DE. Drivers of variability in water use of native and non-native urban trees in the greater Los Angeles area. Urban Ecosyst. 2010;13(4):393–414.

18. Zipper SC, Schatz J, Kucharik CJ, Loheide SP. Urban heat island-induced increases in evapotranspirative demand. Geophys Res Lett. 2017;44(2):873–81.

19. Mullaney J, Lucke T, Trueman SJ. A review of benefits and challenges in growing street trees in paved urban environments. Landsc Urban Plan. 2015;134:157–166.

20. Buyantuyev A, Wu J. Urbanization alters spatiotemporal patterns of ecosystem primary production: A case study of the Phoenix metropolitan region, USA. J Arid Environ. 2009;73(4–5):512–20.

21. Jenerette GD, Miller G, Buyantuev A, Pataki DE, Gillespie TW, Pincetl S. Urban vegetation and income segregation in drylands: a synthesis of seven metropolitan regions in the southwestern United States. Environ Res Lett. 2013;8(4):044001.

22. Shields C, Tague C. Ecohydrology in semiarid urban ecosystems: Modeling the relationship between connected impervious area and ecosystem productivity. Water Resour Res. 2015;51(1):302–319.

23. Rodriguez‐Iturbe I. Ecohydrology: A hydrologic perspective of climate‐soil‐vegetation dynamies. Water Resour Res. 2000;36(1):3–9.

24. Noy-Meir I. Desert ecosystems: environment and producers. Annu Rev Ecol Syst. 1973;4:25–51

25. Ogle K, Reynolds J. Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays. Oecologia. 2004;141(2):282–294. doi: 10.1007/s00442-004-1507-5 15007725

26. Sanchez‐Mejia Z, Papuga S. Observations of a two‐layer soil moisture influence on surface energy dynamics and planetary boundary layer characteristics in a semiarid shrubland. Water Resour Res. 2014;50(1):306–317.

27. Kurc S, Small E. Soil moisture variations and ecosystem‐scale fluxes of water and carbon in semiarid grassland and shrubland. Water Resour Res. 2007;43(6):W06416.

28. Cavanaugh M, Kurc S, Scott R. Evapotranspiration partitioning in semiarid shrubland ecosystems: a two‐site evaluation of soil moisture control on transpiration. Ecohydrology. 2011;4(5):671–681.

29. Szutu DJ, Papuga SA. Year‐Round Transpiration Dynamics Linked With Deep Soil Moisture in a Warm Desert Shrubland. Water Resour Res. 2019 Jul;55(7):5679–95.

30. Huxman T, Snyder K, Tissue D, Leffler A, Ogle K. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia. 2004;141(2):254–268. doi: 10.1007/s00442-004-1682-4 15338414

31. Kurc S, Small E. Dynamics of evapotranspiration in semiarid grassland and shrubland ecosystems during the summer monsoon season, central New Mexico. Water Resour Res. 2004;40(9):W09305.

32. Fravolini A, Hultine KR, Brugnoli E, Gazal R, English NB, Williams DG. Precipitation pulse use by an invasive woody legume: the role of soil texture and pulse size. Oecologia. 2005;144(4):618–27. doi: 10.1007/s00442-005-0078-4 15891829

33. Nolan RH, Tarin T, Rumman R, Cleverly J, Fairweather KA, Zolfaghar S, et al. Contrasting ecophysiology of two widespread arid zone tree species with differing access to water resources. J Arid Environ. 2018;153:1–10.

34. Pettit NE, Froend RH. How important is groundwater availability and stream perenniality to riparian and floodplain tree growth? Hydrol Process. 2018;32(10):1502–1514.

35. Scott R, Cable W, Hultine K. The ecohydrologic significance of hydraulic redistribution in a semiarid savanna. Water Resour Res. 2008;44(2):W02440.

36. Scott RL, Jenerette GD, Potts DL, Huxman TE. Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland. J Geophys Res. 2009;114(G4):G04004.

37. Smith WK, Biederman JA, Scott RL, Moore DJP, He M, Kimball JS, et al. Chlorophyll Fluorescence Better Captures Seasonal and Interannual Gross Primary Productivity Dynamics Across Dryland Ecosystems of Southwestern North America. Geophys Res Lett. 2018;45(2):748–57.

38. Potts DL, Scott RL, Cable JM, Huxman TE, Williams DG. SENSITIVITY OF MESQUITE SHRUBLAND CO 2 EXCHANGE TO PRECIPITATION IN CONTRASTING LANDSCAPE SETTINGS. Ecology. 2008;89(10):2900–10. doi: 10.1890/07-1177.1 18959327

39. Census Bureau US. 2010 Census of Population and Housing. 2010.

40. Climate Tucson—Arizona and Weather averages Tucson. Available from: https://www.usclimatedata.com/climate/tucson/arizona/united-states/usaz0247

41. Sheppard P, Comrie A, Packin G, Angersbach K, Hughes M. The climate of the US Southwest. Clim Res. 2002;21(3):219–38.

42. Levitt DG, Simpson JR, Tipton JL. Water Use of Two Landscape Tree Species in Tucson, Arizona. Journal of the American Society for Horticultural Science. 1995;120:409–416.

43. Schuch UK, Kelly JJ. Mesquite and Palo Verde Trees for the Urban Landscape. 2007: https://cals.arizona.edu/desertlegumeprogram/pdf/aridus19-2.pdf

44. Kettler TA, Doran JW, Gilbert TL. Simplified Method for Soil Particle-Size Determination to Accompany Soil-Quality Analyses. Soil Sci Soc Am J. 2001;65(3):849.

45. Crum SM, Jenerette GD, Crum SM, Jenerette GD. Microclimate Variation among Urban Land Covers: The Importance of Vertical and Horizontal Structure in Air and Land Surface Temperature Relationships. J Appl Meteorol Climatol. 2017;56(9):2531–43.

46. Lu P, Urban L, Zahao P. Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees: theory and practice. Acta Botanica Sinica. 2004; 46(6)631–646.

47. Toomey M, Friedl MA, Frolking S, Hufkens K, Klosterman S, Sonnentag O, et al. Greenness indices from digital cameras predict the timing and seasonal dynamics of canopy-scale photosynthesis. Ecol Appl. 2015;25(1):99–115. doi: 10.1890/14-0005.1 26255360

48. Kurc SA, Benton LM. Digital image-derived greenness links deep soil moisture to carbon uptake in a creosotebush-dominated shrubland. J Arid Environ. 2010;74(5):585–94.

49. Richardson AD, Jenkins JP, Braswell BH, Hollinger DY, Ollinger S V., Smith M-L. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia. 2007;152(2):323–34. doi: 10.1007/s00442-006-0657-z 17342508

50. Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, et al. Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agric For Meteorol. 2004;121(1–2):19–35.

51. US Department of Commerce NNWS. Northern Arizona Monsoon Season. https://www.weather.gov/fgz/Monsoon.

52. Cable D. Seasonal use of soil water by mature velvet mesquite. J Range Manag. 1977;30(1):4–11.

53. Villegas J, Breshears D, Zou C. Seasonally pulsed heterogeneity in microclimate: phenology and cover effects along deciduous grassland–forest continuum. Vadose Zo. 2010;9(3):537–547.

54. Yang H, Yang X, Heskel M, Sun S, Tang J. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest. Sci Rep. 2017;7(1):1267. doi: 10.1038/s41598-017-01260-y 28455492

55. Mizunuma T, Wilkinson M, Eaton E L., Mencuccini M, Morison J I. L., Grace J. The relationship between carbon dioxide uptake and canopy colour from two camera systems in a deciduous forest in southern England. Funct Ecol. 2013;27(1):196–207.

56. Keenan TF, Darby B, Felts E, Sonnentag O, Friedl MA, Hufkens K, et al. Tracking forest phenology and seasonal physiology using digital repeat photography: a critical assessment. Ecol Appl. 2014;24(6):1478–89. doi: 10.1890/13-0652.1 29160668

57. Pincetl S, Gillespie T, Pataki DE, Saatchi S, Saphores J-D. Urban tree planting programs, function or fashion? Los Angeles and urban tree planting campaigns. GeoJournal. 2013;78(3):475–93.


Článok vyšiel v časopise

PLOS One


2019 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#