#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Evaluating the impact of citations of articles based on knowledge flow patterns hidden in the citations


Autoři: Mingyang Wang aff001;  Jiaqi Zhang aff001;  Shijia Jiao aff001;  Tianyu Zhang aff001
Působiště autorů: College of Information and Computer Engineering, Northeast Forestry University, Harbin, People’s Republic of China aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0225276

Souhrn

The effective evaluation of the impact of a scholarly article is a significant endeavor; for this reason, it has garnered attention. From the perspective of knowledge flow, this paper extracted various knowledge flow patterns concealed in articles citation counts to describe the citation impact of the articles. First, the intensity characteristic of knowledge flow was investigated to distinguish the different citation vitality of articles. Second, the knowledge diffusion capacity was examined to differentiate the size of the scope of articles’ influences on the academic environment. Finally, the knowledge transfer capacity was discussed to investigate the support degree of articles on the follow-up research. Experimental results show that articles got more citations recently have a higher knowledge flow intensity. The articles have various impacts on the academic environment and have different supporting effects on the follow-up research, representing the differences in their knowledge diffusion and knowledge transfer capabilities. Compared with the single quantitative index of citation frequency, these knowledge flow patterns can carefully explore the citation value of articles. By integrating the three knowledge flow patterns to examine the total citation impact of articles, we found that the articles exhibit distinct value of citation impact even if they were published in the same field, in the same year, and with similar citation frequencies.

Klíčová slova:

Citation analysis – Bibliometrics – Astronomy – Deep learning – Entropy – Scientific publishing – Astrophysics – Information entropy


Zdroje

1. Abbott A. Italy introduces performance-related funding. Nature. 2009;460(7255):559–559. doi: 10.1038/460559b

2. Bai X, Liu H, Zhang F, Ning Z, Kong X, Lee I et al. An Overview on Evaluating and Predicting Scholarly Article Impact. Information. 2017;8(3):73.

3. Bai X, Zhang F, Lee I. Predicting the citations of scholarly paper. Journal of Informetrics. 2019;13(1):407–418.

4. Cai L, Tian J, Liu J, Bai X, Lee I, Kong X et al. Scholarly impact assessment: a survey of citation weighting solutions. Scientometrics. 2019;118(2):453–478.

5. Chi P S, Gorraiz J, Glänzel W. Comparing capture, usage and citation indicators: an altmetric analysis of journal papers in chemistry disciplines. Scientometrics. 2019;120(3):1461–1473.

6. Glänzel W, Heeffer S, Thijs B. A model for publication and citation statistics of individual authors. In 15th International Conference of the International-Society-for-Scientometrics-and-Informetrics on Scientometrics and Informetrics. Istanbul, Turkey. 2015:942–952.

7. King D. The scientific impact of nations. Nature. 2004;430(6997):311–316. doi: 10.1038/430311a 15254529

8. Petersen A. M., Stanley H. E., & Succi S. (2011). Statistical regularities in the rank-citation profile of scientist, 1, 181.

9. Zhang F, Bai X, Lee I. Author Impact: Evaluations, Predictions, and Challenges. IEEE Access. 2019;7:38657–38669.

10. Subelj L, Fiala D, Bajec M. Network-based statistical comparison of citation topology of bibliographic databases. Scientific Reports. 2014;4: 6496. doi: 10.1038/srep06496 25263231

11. Ravenscroft J, Liakata M, Clare A, Duma D. Measuring scientific impact beyond academia: An assessment of existing impact metrics and proposed improvements. PLOS ONE. 2017;12(3):e0173152. doi: 10.1371/journal.pone.0173152 28278243

12. De Groote S, Shultz M, Smalheiser N. Examining the Impact of the National Institutes of Health Public Access Policy on the Citation Rates of Journal Articles. PLOS ONE. 2015;10(10):e0139951. doi: 10.1371/journal.pone.0139951 26448551

13. Wan X, Liu F. Are all literature citations equally important? Automatic citation strength estimation and its applications. Journal of the Association for Information Science and Technology. 2014;65(9):1929–1938.

14. Hirsch J. An index to quantify an individual's scientific research output. Proceedings of the National Academy of Sciences. 2005;102(46):16569–16572.

15. Braun T, Glänzel W, Schubert A. A Hirsch-type index for journals. Scientometrics. 2006;69(1):169–173.

16. Bertoli-Barsotti L, Lando T. The h-index as an almost-exact function of some basic statistics. Scientometrics. 2017;113(2):1209–1228. doi: 10.1007/s11192-017-2508-6 29081557

17. Chi P S, Glänzel W. Do usage and scientific collaboration associate with citation impact? In 21st International Conference on Science and Technology Indicators. Valencia, Spain. 2016:1223–1228.

18. Chi P S, Glänzel W. An empirical investigation of the associations among usage, scientific collaboration and citation impact. Scientometrics. 2017;112(1):403–412.

19. Chi P S, Glänzel W. Comparison of citation and usage indicators in research assessment in scientific disciplines and journals. Scientometrics. 2018;116(1):537–554.

20. Gao C, Wang Z, Li X, Zhang Z, Zeng W. PR-Index: Using the h-Index and PageRank for Determining True Impact. PLOS ONE. 2016;11(9):e0161755. doi: 10.1371/journal.pone.0161755 27627767

21. Glänzel W, Thijs B. The role of baseline granularity for benchmarking citation impact. The case of CSS profiles. Scientometrics. 2018; 116(1):521–536.

22. Wang L, Thijs B, Glänzel W. Characteristics of international collaboration in sport sciences publications and its influence on citation impact. Scientometrics. 2015;105(2):843–862.

23. Zhang C. A novel triangle mapping technique to study the h-index based citation distribution. Scientific Reports. 2013;3(1).

24. Egghe L. Theory and practise of the g-index. Scientometrics. 2006;69(1):131–152.

25. Lee JY. A proposal on modified g-index for evaluating research performance. Scientometrics. 2017;34(3):209–228.

26. Jin B, Liang L, Rousseau R, Egghe L. The R- and AR-indices: Complementing the h-index. Chinese Science Bulletin. 2007;52(6):855–863.

27. Bai X, Xia F, Lee I, Zhang J, Ning Z. Identifying Anomalous Citations for Objective Evaluation of Scholarly Article Impact. PLOS ONE. 2016;11(9):e0162364. doi: 10.1371/journal.pone.0162364 27606817

28. Bai X, Zhang F, Hou J, Lee I, Kong X, Tolba A et al. Quantifying the impact of scholarly papers based on higher-order weighted citations. PLOS ONE. 2018;13(3):e0193192. doi: 10.1371/journal.pone.0193192 29596426

29. Chen C. Predictive effects of structural variation on citation counts. Journal of the American Society for Information Science and Technology. 2011;63(3):431–449.

30. Li J, Willett P. ArticleRank: a PageRank-based alternative to numbers of citations for analysing citation networks. Aslib Proceedings. 2009;61(6):605–618.

31. Li Z, Peng Q K, Liu C. Two citation-based indicators to measure latent referential value of papers. Scientometrics. 2016;108(3):1299–1313.

32. Yan E, Ding Y, Sugimoto C. P-Rank: An indicator measuring prestige in heterogeneous scholarly networks. Journal of the American Society for Information Science and Technology. 2011;62(3):467–477.

33. Singh A, Shubhankar K, Pudi V. An efficient algorithm for ranking research papers based on citation network. In 3rd Conference on Data Mining and Optimization (DMO), Putrajaya, Malaysia, 2011 (pp. 88–95). IEEE.

34. Walker D, Xie H, Yan K, Maslov S. Ranking scientific publications using a model of network traffic. Journal of Statistical Mechanics: Theory and Experiment. 2007;2007(06):P06010–P06010.

35. Su C, Pan Y, Zhen Y, Ma Z, Yuan J, Guo H et al. PrestigeRank: A new evaluation method for papers and journals. Journal of Informetrics. 2011;5(1):1–13.

36. Ma N, Guan J, Zhao Y. Bringing PageRank to the citation analysis. Information Processing & Management, 2008, 44 (2), 800–810.

37. Qiao H, Wang Y, Liang Y. A value evaluation method for papers based on improved PageRank algorithm. In 2nd International Conference on Computer Science and Network Technology (ICCSNT), Changchun, China, 2012 (pp. 2201–2205). IEEE.

38. Senanayake U, Piraveenan M, Zomaya A. The Pagerank-Index: Going beyond Citation Counts in Quantifying Scientific Impact of Researchers. PLOS ONE. 2015;10(8):e0134794. doi: 10.1371/journal.pone.0134794 26288312

39. Spitz A, Horvát E. Measuring Long-Term Impact Based on Network Centrality: Unraveling Cinematic Citations. PLoS ONE. 2014;9(10):e108857. doi: 10.1371/journal.pone.0108857 25295877

40. Wang J, Thijs B, Glänzel W. Interdisciplinarity and Impact: Distinct Effects of Variety, Balance, and Disparity. PLOS ONE. 2015;10(5):e0127298. doi: 10.1371/journal.pone.0127298 26001108

41. Wang M, Ren J, Li S, Chen G. Quantifying a Paper’s Academic Impact by Distinguishing the Unequal Intensities and Contributions of Citations. IEEE Access. 2019;7:96198–96214.

42. Kwon S, Solomon G, Youtie J, Porter A. A measure of knowledge flow between specific fields: Implications of interdisciplinarity for impact and funding. PLOS ONE. 2017;12(10):e0185583. doi: 10.1371/journal.pone.0185583 29016631

43. Wang M, Li S, Chen G. Detecting latent referential articles based on their vitality performance in the latest 2 years. Scientometrics. 2017;112(3):1557–1571.

44. Wang M, Yu G, An S, Yu D. Discovery of factors influencing citation impact based on a soft fuzzy rough set model. Scientometrics. 2012;93(3):635–644.

45. Wang M, Yu G, Xu J, He H, Yu D, An S. Development a case-based classifier for predicting highly cited papers. Journal of Informetrics. 2012;6(4):586–599.

46. Lee J, Kim DW. Feature selection for multi-label classification using multivariate mutual information. Pattern Recogn. Lett. 2013;34(3):349–357.

47. Han M, Ren W, Liu X. Joint mutual information-based input variable selection for multivariate time series modeling. Engineering Applications of Artificial Intelligence. 2015;37:250–257.

48. Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their compositionality. Adv Neural Inf Process Syst. 2013;26:3111–3119.

49. Yu J, Zhang B, Kuang Z, Lin D, Fan J. iPrivacy: Image Privacy Protection by Identifying Sensitive Objects via Deep Multi-Task Learning. IEEE Transactions on Information Forensics and Security. 2017;12(5):1005–1016.

50. Richard Socher, Chen DQ, Manning CD, Ng AY. Reasoning with neural tensor networks for knowledge base completion. Adv Neural Inf Process Syst. 2013, 926–934.

51. Socher Richard, Perelygin Alex, Wu Jean Y, Chuang J. Recursive deep models for semantic compositionality over a sentiment treebank. Proceedings of the Conference on Empirical Methods in Natural Language Processing, Washington, USA, 2013, 1631–1642.

52. Zhang W. N., Ming Z. Y., Zhang Y, Nie L. Q., Liu T, Chua T. S. The use of dependency relation graph to enhance the term weighting in question retrieval. COLING, 2012: 3105–3120.

53. Zhang W. N., Ming Z. Y., Zhang Y, Liu T, Chua T. S. Capturing the semantics of key phrases using multiple languages for question retrieval. IEEE Transactions on Knowledge and Data Engineering. 2016, 28(4): 888–900.

54. Zhang W. N., Zhang Y, Liu T. A topic inference based translation model for question retrieval in community-based question answering services. Chinese Journal of Computers. 2015, 38(2):313–321.

55. Zhang, C., Zhang L., Wang C. J., & Xie, J. Y. Text summarization based on sentence selection with semantic representation. IEEE 26th International Conference on Tools with Artificial Intelligence (ICTAI), Limassol, Cyprus, 2014, 584–590.

56. Zhang W. N., Liu T, Yin Q. Y., Zhang Y. Neural recovery machine for Chinese dropped pronoun. Frontiers of Computer Science. 2019, 13(5): 1023–1033.

57. Zhang W. N., Zhu Q. F., Wang Y. F., Zhao Y. Y., Liu T. Neural personalized response generation as domain adaptation. World Wide Web-internet and Web Information Systems. 2019, 22(4): 1427–1446.

58. Liu T, Zhang W. N., Zhang Y. SocialRobot: a big data-driven humanoid intelligent system in social media services. Multimedia Systems, 2016, 22(1):17–27.

59. Yin Q Y., Zhang W. N., Zhang Y., Liu T. A joint model for ellipsis identification and recovery. Journal of Computer Research and Development. 2015, 52(11):2460–2467.

60. Le QV, Mikolov T. Distributed representations of sentences and documents. Proceedings of the 31th International Conference on Machine Learning; Beijing, China, 2014 1188–1196.

61. Huang S, Chang J, Leng G, Huang Q. Integrated index for drought assessment based on variable fuzzy set theory: A case study in the Yellow River basin, China. Journal of Hydrology. 2015;527:608–618.

62. Moed HF, (Ed.). (2005). Citation analysis in research evaluation. Dordrecht: Springer. p. 130.

63. Gläser J, Glänzel W, Scharnhorst A. Same data—different results? Towards a comparative approach to the identification of thematic structures in science. Scientometrics. 2017;111(2):981–998.

64. Aksnes D. Characteristics of highly cited papers. Research Evaluation. 2003;12(3):159–170.

65. Yu G., Yu T., Wang L. Assessing influence of scientific articles based on feature spaces of citations. International Conference on Management Science and Engineering (ICMSE 2016). Switzerland, Alten, 2016:41–48.


Článok vyšiel v časopise

PLOS One


2019 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#