#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Involvement of extracellular vesicles in the macrophage-tumor cell communication in head and neck squamous cell carcinoma


Autoři: Àngela Maria Bellmunt aff001;  Laura López-Puerto aff002;  Juan Lorente aff001;  Daniel Closa aff002
Působiště autorů: Otolaryngology Department, Hospital Vall d’Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain aff001;  Department of Experimental Pathology, Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain aff002
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0224710

Souhrn

Background

Exosomes are cell-derived vesicles that mediate cellular communication in health and multiple diseases, including cancer. However, its role in head and neck cancer has been poorly defined. Here, we investigated the relevance of exosomes in the signaling between larynx cancer cells and macrophages.

Methods

Exosomes from THP1 macrophages and BICR18 cells (a larynx squamous cell carcinoma cell line) were purified and their role in the cancer cell migration, macrophage phenotype and immunosuppressive activity was evaluated. The activation of STAT3 signal transduction in macrophages in response to exosomes obtained from cancer cells was also evaluated.

Results

Macrophages foster the cancer cell migration and this effect is mediated by exosome signaling. On the other hand, exosomes also induce the expression of IL-10 in macrophages and PD-L1 in cancer cells, thus resulting in the promotion of an immunosuppressive environment. Moreover, we observed that the effects induced in cancer cells are mediated by the exosome-depending activation of STAT-3 signal transduction pathway.

Conclusions

Our study indicates that exosomes released by both macrophages and cancer cells plays a critical role in tumor progression in larynx cancer and might be a potential target for therapeutic intervention in head and neck cancer.

Klíčová slova:

Cancer treatment – Vesicles – Macrophages – Immunosuppressives – Secretion – Squamous cell carcinomas – Cancer cell migration – Exosomes


Zdroje

1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur J Cancer. 2013;49:1374–403. doi: 10.1016/j.ejca.2012.12.027 23485231

2. Mourad M, Jetmore T, Jategaonkar AA, et al. Epidemiological Trends of Head and Neck Cancer in the United States: A SEER Population Study. J Oral Maxillofac Surg. 2017;75:2562–72. doi: 10.1016/j.joms.2017.05.008 28618252

3. Steuer CE, El-Deiry M, Parks JR, et al. An update on larynx cancer. CA Cancer J Clin. 2017;67:31–50. doi: 10.3322/caac.21386 27898173

4. Whiteman DC, Wilson LF. The fractions of cancer attributable to modifiable factors: A global review. Cancer Epidemiol. 2016;44:203–21. doi: 10.1016/j.canep.2016.06.013 27460784

5. Gama RR, Carvalho AL, Longatto Filho A, et al. Detection of human papillomavirus in laryngeal squamous cell carcinoma: Systematic review and meta-analysis. Laryngoscope. 2016;126:885–93. doi: 10.1002/lary.25738 26542064

6. Pembro Ups Survival in PD-L1-positive HNSCC. Cancer Discov. 2018;

7. Hui L, Chen Y. Tumor microenvironment: Sanctuary of the devil. Cancer Lett. 2015;368:7–13. doi: 10.1016/j.canlet.2015.07.039 26276713

8. Komohara Y, Takeya M. CAFs and TAMs: maestros of the tumour microenvironment. J Pathol. 2017;241:313–5. doi: 10.1002/path.4824 27753093

9. Lotfi A, Mohammadi G, Saniee L, et al. Serum Level of Matrix Metalloproteinase-2 and -9 in Patients with Laryngeal Squamous Cell Carcinoma and Clinical Significance. Asian Pac J Cancer Prev. 2015;16:6749–51. doi: 10.7314/apjcp.2015.16.15.6749 26434905

10. Solomon B, Young RJ, Rischin D. Head and neck squamous cell carcinoma: Genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin Cancer Biol. 2018;

11. Poh AR, Ernst M. Targeting Macrophages in Cancer: From Bench to Bedside. Front Oncol. 2018;8:49. doi: 10.3389/fonc.2018.00049 29594035

12. Komohara Y, Jinushi M, Takeya M. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci. 2014;105:1–8. doi: 10.1111/cas.12314 24168081

13. Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192:1027–34. doi: 10.1084/jem.192.7.1027 11015443

14. Vieira T, Antoine M, Hamard C, et al. Sarcomatoid lung carcinomas show high levels of programmed death ligand-1 (PD-L1) and strong immune-cell infiltration by TCD3 cells and macrophages. Lung Cancer. 2016;98:51–8. doi: 10.1016/j.lungcan.2016.05.013 27393506

15. Halse H, Colebatch AJ, Petrone P, et al. Multiplex immunohistochemistry accurately defines the immune context of metastatic melanoma. Sci Rep. 2018;8:11158. doi: 10.1038/s41598-018-28944-3 30042403

16. Whiteside TL. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69–79. doi: 10.1016/j.smim.2017.12.003 29289420

17. Greening DW, Gopal SK, Xu R, et al. Exosomes and their roles in immune regulation and cancer. Semin Cell Dev Biol. 2015;40:72–81. doi: 10.1016/j.semcdb.2015.02.009 25724562

18. Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29C:116–25.

19. Bae S, Brumbaugh J, Bonavida B. Exosomes derived from cancerous and non-cancerous cells regulate the anti-tumor response in the tumor microenvironment. Genes Cancer. 2018;9:87–100. doi: 10.18632/genesandcancer.172 30108680

20. Edwards JP, Zhang X, Frauwirth KA, et al. Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol. 2006;80:1298–307. doi: 10.1189/jlb.0406249 16905575

21. Bonjoch L, Gironella M, Iovanna JL, et al. REG3β modifies cell tumor function by impairing extracellular vesicle uptake. Sci Rep. 2017;7:3143. doi: 10.1038/s41598-017-03244-4

22. Wang J, Yang X, Li R, et al. Long non-coding RNA MYU promotes prostate cancer proliferation by mediating the miR-184/c-Myc axis. Oncol Rep. 2018;

23. Li M, Lu Y, Xu Y, et al. Horizontal transfer of exosomal CXCR4 promotes murine hepatocarcinoma cell migration, invasion and lymphangiogenesis. Gene. 2018;676:101–9. doi: 10.1016/j.gene.2018.07.018 30010038

24. Vidyarthi A, Khan N, Agnihotri T, et al. TLR-3 Stimulation Skews M2 Macrophages to M1 Through IFN-αβ Signaling and Restricts Tumor Progression. Front Immunol. 2018;9:1650. doi: 10.3389/fimmu.2018.01650

25. Dannenmann SR, Thielicke J, Stöckli M, et al. Tumor-associated macrophages subvert T-cell function and correlate with reduced survival in clear cell renal cell carcinoma. Oncoimmunology. 2013;2:e23562. doi: 10.4161/onci.23562 23687622

26. Ohaegbulam KC, Assal A, Lazar-Molnar E, et al. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med. 2015;21:24–33. doi: 10.1016/j.molmed.2014.10.009 25440090

27. Patel KR, Martinez A, Stahl JM, et al. Increase in PD-L1 expression after pre-operative radiotherapy for soft tissue sarcoma. Oncoimmunology. 2018;7:e1442168. doi: 10.1080/2162402X.2018.1442168 29900051

28. Pollari M, Brück O, Pellinen T, et al. PD-L1+ tumor-associated macrophages and PD-1+ tumor infiltrating lymphocytes predict survival in primary testicular lymphoma. Haematologica. 2018;haematol.2018.197194.

29. Zheng B, Ren T, Huang Y, et al. Apatinib inhibits migration and invasion as well as PD-L1 expression in osteosarcoma by targeting STAT3. Biochem Biophys Res Commun. 2018;495:1695–701. doi: 10.1016/j.bbrc.2017.12.032 29225166

30. Xu L, Chen X, Shen M, et al. Inhibition of IL-6-JAK/Stat3 signaling in castration-resistant prostate cancer cells enhances the NK cell-mediated cytotoxicity via alteration of PD-L1/NKG2D ligand levels. Mol Oncol. 2018;12:269–86. doi: 10.1002/1878-0261.12135 28865178

31. Ham S, Lima LG, Chai EPZ, et al. Breast Cancer-Derived Exosomes Alter Macrophage Polarization via gp130/STAT3 Signaling. Front Immunol. 2018;9:871. doi: 10.3389/fimmu.2018.00871 29867925


Článok vyšiel v časopise

PLOS One


2019 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#