-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Retinoic Acid Activates Two Pathways Required for Meiosis in Mice
The transition from mitosis to meiosis is a defining feature of germ cells, the precursors of eggs and sperm. In mice, retinoic acid (RA), a vitamin A derivative, induces expression of the gene Stra8, which in turn is required for the first critical steps of meiosis. The timing of Stra8 expression in mammalian germ cells is influenced by an RA-degrading enzyme, CYP26B1, that is normally expressed in fetal testes to delay meiosis in males. It is unknown if Stra8 is RA's only meiosis-inducing target in germ cells or if other such genes are regulated by RA independently of Stra8. To investigate this question, we generated two lines of mice: Cyp26b1 mutants and Stra8 mutants. Our genetic experiments comparing germ cell development in these two mutants revealed a new RA target, Rec8. We demonstrate that Rec8 upregulation by RA occurs in the same temporal and spatial manner as Stra8, but Rec8 expression is independent of Stra8. Rec8, like Stra8, plays a critical role during early meiotic processes, suggesting that RA induces meiosis in at least two independent pathways. These findings expand our understanding of the gene regulatory network involved in meiotic initiation in mammals.
Vyšlo v časopise: Retinoic Acid Activates Two Pathways Required for Meiosis in Mice. PLoS Genet 10(8): e32767. doi:10.1371/journal.pgen.1004541
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004541Souhrn
The transition from mitosis to meiosis is a defining feature of germ cells, the precursors of eggs and sperm. In mice, retinoic acid (RA), a vitamin A derivative, induces expression of the gene Stra8, which in turn is required for the first critical steps of meiosis. The timing of Stra8 expression in mammalian germ cells is influenced by an RA-degrading enzyme, CYP26B1, that is normally expressed in fetal testes to delay meiosis in males. It is unknown if Stra8 is RA's only meiosis-inducing target in germ cells or if other such genes are regulated by RA independently of Stra8. To investigate this question, we generated two lines of mice: Cyp26b1 mutants and Stra8 mutants. Our genetic experiments comparing germ cell development in these two mutants revealed a new RA target, Rec8. We demonstrate that Rec8 upregulation by RA occurs in the same temporal and spatial manner as Stra8, but Rec8 expression is independent of Stra8. Rec8, like Stra8, plays a critical role during early meiotic processes, suggesting that RA induces meiosis in at least two independent pathways. These findings expand our understanding of the gene regulatory network involved in meiotic initiation in mammals.
Zdroje
1. BowlesJ, KnightD, SmithC, WilhelmD, RichmanJ, et al. (2006) retinoid signaling determines germ cell fate in mice. Science 312 : 596–600.
2. BaltusAE, MenkeDB, HuYC, GoodheartML, CarpenterAE, et al. (2006) in germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic dna replication. Nat Genet 38 : 1430–1434.
3. KoubovaJ, MenkeDB, ZhouQ, CapelB, GriswoldMD, et al. (2006) retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci U S A 103 : 2474–2479.
4. AndersonEL, BaltusAE, Roepers-GajadienHL, HassoldTJ, de RooijDG, et al. (2008) stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci U S A 105 : 14976–14980.
5. MenkeDB, KoubovaJ, PageDC (2003) sexual differentiation of germ cells in xx mouse gonads occurs in an anterior-to-posterior wave. Dev biol 262 : 303–312.
6. LinY, GillME, KoubovaJ, PageDC (2008) germ cell-intrinsic and -extrinsic factors govern meiotic initiation in mouse embryos. Science 322 : 1685–1687.
7. MacleanG, LiH, MetzgerD, ChambonP, PetkovichM (2007) apoptotic extinction of germ cells in testes of cyp26b1 knockout mice. Endocrinology 148 : 4560–4567.
8. GriswoldMD, HogarthCA, BowlesJ, KoopmanP (2012) initiating meiosis: the case for retinoic acid. Biol reprod 86 : 35.
9. BannisterLA, ReinholdtLG, MunroeRJ, SchimentiJC (2004) positional cloning and characterization of mouse mei8, a disrupted allelle of the meiotic cohesin rec8. Genesis 40 : 184–194.
10. XuH, BeasleyMD, WarrenWD, van der HorstGT, MckayMJ (2005) absence of mouse rec8 cohesin promotes synapsis of sister chromatids in meiosis. Dev cell 8 : 949–961.
11. YaoHH, DinapoliL, CapelB (2003) meiotic germ cells antagonize mesonephric cell migration and testis cord formation in mouse gonads. Development 130 : 5895–5902.
12. BullejosM, KoopmanP (2004) germ cells enter meiosis in a rostro-caudal wave during development of the mouse ovary. Mol reprod dev 68 : 422–428.
13. GermainP, IyerJ, ZechelC, GronemeyerH (2002) co-regulator recruitment and the mechanism of retinoic acid receptor synergy. Nature 415 : 187–192.
14. SuzukiA, SagaY (2008) nanos2 suppresses meiosis and promotes male germ cell differentiation. Genes dev 22 : 430–435.
15. BaudatF, ManovaK, YuenJP, JasinM, KeeneyS (2000) chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking spo11. Mol cell 6 : 989–998.
16. RomanienkoPJ, Camerini-OteroRD (2000) the mouse spo11 gene is required for meiotic chromosome synapsis. Mol cell 6 : 975–987.
17. YoshidaK, KondohG, MatsudaY, HabuT, NishimuneY, et al. (1998) the mouse reca-like gene dmc1 is required for homologous chromosome synapsis during meiosis. Mol cell 1 : 707–718.
18. PittmanDL, CobbJ, SchimentiKJ, WilsonLA, CooperDM, et al. (1998) meiotic prophase arrest with failure of chromosome synapsis in mice deficient for dmc1, a germline-specific reca homolog. Mol cell 1 : 697–705.
19. RogakouEP, PilchDR, OrrAH, IvanovaVS, BonnerWM (1998) dna double-stranded breaks induce histone h2ax phosphorylation on serine 139. J biol chem 273 : 5858–5868.
20. MahadevaiahSK, TurnerJM, BaudatF, RogakouEP, de BoerP, et al. (2001) recombinational dna double-strand breaks in mice precede synapsis. Nat genet 27 : 271–276.
21. RogakouEP, Nieves-NeiraW, BoonC, PommierY, BonnerWM (2000) initiation of dna fragmentation during apoptosis induces phosphorylation of h2ax histone at serine 139. J biol chem 275 : 9390–9395.
22. KnudsonCM, TungKS, TourtellotteWG, BrownGA, KorsmeyerSJ (1995) bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270 : 96–99.
23. StallockJ, MolyneauxK, SchaibleK, KnudsonCM, WylieC (2003) the pro-apoptotic gene bax is required for the death of ectopic primordial germ cells during their migration in the mouse embryo. Development 130 : 6589–6597.
24. SabaR, WuQ, SagaY (2014) cyp26b1 promotes male germ cell differentiation by suppressing stra8-dependent meiotic and stra8-independent mitotic pathways. Dev biol 389 : 173–181.
25. Oulad-AbdelghaniM, BouilletP, DecimoD, GansmullerA, HeybergerS, et al. (1996) characterization of a premeiotic germ cell-specific cytoplasmic protein encoded by stra8, a novel retinoic acid-responsive gene. J cell biol 135 : 469–477.
26. MahonyS, MazzoniEO, MccuineS, YoungRA, WichterleH, et al. (2011) ligand-dependent dynamics of retinoic acid receptor binding during early neurogenesis. Genome biol 12: r2.
27. DorsettD (2011) cohesin: genomic insights into controlling gene transcription and development. Curr opin genet dev 21 : 199–206.
28. KageyMH, NewmanJJ, BilodeauS, ZhanY, OrlandoDA, et al. (2010) mediator and cohesin connect gene expression and chromatin architecture. Nature 467 : 430–435.
29. MarstonAL, AmonA (2004) meiosis: cell-cycle controls shuffle and deal. Nat rev mol cell biol 5 : 983–997.
30. MichaelisC, CioskR, NasmythK (1997) cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91 : 35–45.
31. HopperAK, HallBD (1975) mating type and sporulation in yeast. I. Mutations which alter mating-type control over sporulation. Genetics 80 : 41–59.
32. HopperAK, KirschJ, HallBD (1975) mating type and sporulation in yeast. Ii. Meiosis, recombination, and radiation sensitivity in an alpha-alpha diploid with altered sporulation control. Genetics 80 : 61–76.
33. ColominaN, LiuY, AldeaM, GariE (2003) tor regulates the subcellular localization of ime1, a transcriptional activator of meiotic development in budding yeast. Mol cell biol 23 : 7415–7424.
34. SmithHE, SuSS, NeigebornL, DriscollSE, MitchellAP (1990) role of ime1 expression in regulation of meiosis in saccharomyces cerevisiae. Mol cell biol 10 : 6103–6113.
35. RideoutWM3rd, WakayamaT, WutzA, EgganK, Jackson-GrusbyL, et al. (2000) generation of mice from wild-type and targeted es cells by nuclear cloning. Nat genet 24 : 109–110.
36. YashiroK, ZhaoX, UeharaM, YamashitaK, NishijimaM, et al. (2004) regulation of retinoic acid distribution is required for proximodistal patterning and outgrowth of the developing mouse limb. Dev cell 6 : 411–422.
37. RuggiuM, SpeedR, TaggartM, MckaySJ, KilanowskiF, et al. (1997) the mouse dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature 389 : 73–77.
38. LinY, PageDC (2005) dazl deficiency leads to embryonic arrest of germ cell development in xy c57bl/6 mice. Dev biol 288 : 309–316.
39. WilkinsonDG, NietoMA (1993) detection of messenger rna by in situ hybridization to tissue sections and whole mounts. Methods enzymol 225 : 361–373.
40. WangX, SeedB (2003) a pcr primer bank for quantitative gene expression analysis. Nucleic acids res 31: e154.
Štítky
Genetika Reprodukčná medicína
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2014 Číslo 8- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- DNA Double Strand Break Repair in Mitosis Is Suppressed by Phosphorylation of XRCC4
- Inference of Transposable Element Ancestry
- The Population Genetics of Evolutionary Rescue
- Retinoic Acid Activates Two Pathways Required for Meiosis in Mice
- Pooled Segregant Sequencing Reveals Genetic Determinants of Yeast Pseudohyphal Growth
- Comprehensive Identification of Single Nucleotide Polymorphisms Associated with Beta-lactam Resistance within Pneumococcal Mosaic Genes
- SMA-Causing Missense Mutations in Display a Wide Range of Phenotypes When Modeled in
- Branch Migration Prevents DNA Loss during Double-Strand Break Repair
- Transcriptome Sequencing from Diverse Human Populations Reveals Differentiated Regulatory Architecture
- Genetic Deletion of SEPT7 Reveals a Cell Type-Specific Role of Septins in Microtubule Destabilization for the Completion of Cytokinesis
- Tethering Sister Centromeres to Each Other Suggests the Spindle Checkpoint Detects Stretch within the Kinetochore
- Global Genetic Variations Predict Brain Response to Faces
- Demography and the Age of Rare Variants
- The Response to High CO Levels Requires the Neuropeptide Secretion Component HID-1 to Promote Pumping Inhibition
- Sp6 and Sp8 Transcription Factors Control AER Formation and Dorsal-Ventral Patterning in Limb Development
- The Groucho Co-repressor Is Primarily Recruited to Local Target Sites in Active Chromatin to Attenuate Transcription
- A Transposable Element Insertion Confers Xenobiotic Resistance in Drosophila
- The Genomic Architecture of Population Divergence between Subspecies of the European Rabbit
- Human Social Genomics
- Gene Expansion Shapes Genome Architecture in the Human Pathogen : An Evolutionary Genomics Analysis in the Ancient Terrestrial Mucorales (Mucoromycotina)
- Canonical Non-Homologous End Joining in Mitosis Induces Genome Instability and Is Suppressed by M-phase-Specific Phosphorylation of XRCC4
- Roles of Type 1A Topoisomerases in Genome Maintenance in
- The TRIM-NHL Protein LIN-41 Controls the Onset of Developmental Plasticity in
- Wnt-Mediated Repression via Bipartite DNA Recognition by TCF in the Hematopoietic System
- KDM6 Demethylase Independent Loss of Histone H3 Lysine 27 Trimethylation during Early Embryonic Development
- Integration of UPR and Oxidative Stress Signaling in the Control of Intestinal Stem Cell Proliferation
- miR171-Targeted Scarecrow-Like Proteins Bind to GT -Elements and Mediate Gibberellin-Regulated Chlorophyll Biosynthesis under Light Conditions
- Syndecan-1 Is Required to Maintain Intradermal Fat and Prevent Cold Stress
- LIN-3/EGF Promotes the Programmed Cell Death of Specific Cells in by Transcriptional Activation of the Pro-apoptotic Gene
- A System for Genome-Wide Histone Variant Dynamics In ES Cells Reveals Dynamic MacroH2A2 Replacement at Promoters
- Multiple Regulation of Rad51-Mediated Homologous Recombination by Fission Yeast Fbh1
- A Genome-Wide Association Study of the Maize Hypersensitive Defense Response Identifies Genes That Cluster in Related Pathways
- The RNA Helicases AtMTR4 and HEN2 Target Specific Subsets of Nuclear Transcripts for Degradation by the Nuclear Exosome in
- Asymmetric Division and Differential Gene Expression during a Bacterial Developmental Program Requires DivIVA
- A Model-Based Approach for Identifying Signatures of Ancient Balancing Selection in Genetic Data
- Chromatin Insulator Factors Involved in Long-Range DNA Interactions and Their Role in the Folding of the Drosophila Genome
- Conditional Inactivation of Upstream Binding Factor Reveals Its Epigenetic Functions and the Existence of a Somatic Nucleolar Precursor Body
- Evidence for Divisome Localization Mechanisms Independent of the Min System and SlmA in
- Patterns of Admixture and Population Structure in Native Populations of Northwest North America
- Response Regulator Heterodimer Formation Controls a Key Stage in S Development
- A Genetic Strategy to Measure Circulating Insulin Reveals Genes Regulating Insulin Production and Secretion
- EVA-1 Functions as an UNC-40 Co-receptor to Enhance Attraction to the MADD-4 Guidance Cue in
- Dysfunction of the CNS-Heart Axis in Mouse Models of Huntington's Disease
- An Otx/Nodal Regulatory Signature for Posterior Neural Development in Ascidians
- Phosphorylation of a Central Clock Transcription Factor Is Required for Thermal but Not Photic Entrainment
- Genome-Wide Patterns of Genetic Variation within and among Alternative Selective Regimes
- EF-P Dependent Pauses Integrate Proximal and Distal Signals during Translation
- Ku-Mediated Coupling of DNA Cleavage and Repair during Programmed Genome Rearrangements in the Ciliate
- Functional Specialization Among Members Of Knickkopf Family Of Proteins In Insect Cuticle Organization
- Playing RNase P Evolution: Swapping the RNA Catalyst for a Protein Reveals Functional Uniformity of Highly Divergent Enzyme Forms
- The Translational Regulators GCN-1 and ABCF-3 Act Together to Promote Apoptosis in
- Meta-Analysis of Genome-Wide Association Studies in African Americans Provides Insights into the Genetic Architecture of Type 2 Diabetes
- A -Regulatory Mutation of Causes Silky-Feather in Chickens
- VIB1, a Link between Glucose Signaling and Carbon Catabolite Repression, Is Essential for Plant Cell Wall Degradation by
- A Population Genetic Signal of Polygenic Adaptation
- A Conserved Dopamine-Cholecystokinin Signaling Pathway Shapes Context–Dependent Behavior
- The MAP Kinase p38 Is Part of Circadian Clock
- The Cohesin Subunit Rad21 Is Required for Synaptonemal Complex Maintenance, but Not Sister Chromatid Cohesion, during Drosophila Female Meiosis
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Meta-Analysis of Genome-Wide Association Studies in African Americans Provides Insights into the Genetic Architecture of Type 2 Diabetes
- KDM6 Demethylase Independent Loss of Histone H3 Lysine 27 Trimethylation during Early Embryonic Development
- The RNA Helicases AtMTR4 and HEN2 Target Specific Subsets of Nuclear Transcripts for Degradation by the Nuclear Exosome in
- EF-P Dependent Pauses Integrate Proximal and Distal Signals during Translation
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy