#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genetic Deletion of SEPT7 Reveals a Cell Type-Specific Role of Septins in Microtubule Destabilization for the Completion of Cytokinesis


Cytokinesis is the finalizing step of the complex scenario of mitosis, leading to separation of two sister cells. The cellular mechanism of cytokinesis in eukaryotes differs at least between yeasts, plants and animals. So far, it is also not clear whether all mammalian cells follow the same mechanistic rules of cytokinesis. Here, we demonstrate that, depending on the mammalian cell type, two different pathways could result in completion of cytokinesis, a septin-dependent pathway and a distinct mechanism, which does not require septins prevalent in the hematopoietic system. Using multiple conditional knockouts, we demonstrate this cell type specificity in vitro and in vivo, and present evidence for the involvement of cell-type specific alteration of the microtubule cytoskeleton. Our data, together with the previously available septin knockdown data in cancer cell lines, suggest septins as plausible antitumor targets with high therapeutic index due to lack of off-target effects on hematopoiesis.


Vyšlo v časopise: Genetic Deletion of SEPT7 Reveals a Cell Type-Specific Role of Septins in Microtubule Destabilization for the Completion of Cytokinesis. PLoS Genet 10(8): e32767. doi:10.1371/journal.pgen.1004558
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004558

Souhrn

Cytokinesis is the finalizing step of the complex scenario of mitosis, leading to separation of two sister cells. The cellular mechanism of cytokinesis in eukaryotes differs at least between yeasts, plants and animals. So far, it is also not clear whether all mammalian cells follow the same mechanistic rules of cytokinesis. Here, we demonstrate that, depending on the mammalian cell type, two different pathways could result in completion of cytokinesis, a septin-dependent pathway and a distinct mechanism, which does not require septins prevalent in the hematopoietic system. Using multiple conditional knockouts, we demonstrate this cell type specificity in vitro and in vivo, and present evidence for the involvement of cell-type specific alteration of the microtubule cytoskeleton. Our data, together with the previously available septin knockdown data in cancer cell lines, suggest septins as plausible antitumor targets with high therapeutic index due to lack of off-target effects on hematopoiesis.


Zdroje

1. De LozanneA, SpudichJA (1987) Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science 236: 1086–1091.

2. DavidMD, PetitD, BertoglioJ (2014) The RhoGAP ARHGAP19 controls cytokinesis and chromosome segregation in T lymphocytes. J Cell Sci 127: 400–410 doi:10.1242/jcs.135079

3. ZaninE, DesaiA, PoserI, ToyodaY, AndreeC, et al. (2013) A conserved RhoGAP limits M phase contractility and coordinates with microtubule asters to confine RhoA during cytokinesis. Dev Cell 26: 496–510 doi:10.1016/j.devcel.2013.08.005

4. MostowyS, CossartP (2012) Septins: the fourth component of the cytoskeleton. Nat Rev Mol Cell Biol 13: 183–194 doi:10.1038/nrm3284

5. HartwellLH, CulottiJ, ReidB (1970) Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc Natl Acad Sci USA 66: 352–359.

6. WeirichCS, ErzbergerJP, BarralY (2008) The septin family of GTPases: architecture and dynamics. Nat Rev Mol Cell Biol 9: 478–489 doi:10.1038/nrm2407

7. GreenRA, PaluchE, OegemaK (2012) Cytokinesis in Animal Cells. Annu Rev Cell Dev Biol 28: 29–58 doi:10.1146/annurev-cellbio-101011-155718

8. FededaJP, GerlichDW (2012) Molecular control of animal cell cytokinesis. Nat Cell Biol 14: 440–447 doi:10.1038/ncb2482

9. RenshawMJ, LiuJ, LavoieBD, WildeA (2014) Anillin-dependent organization of septin filaments promotes intercellular bridge elongation and Chmp4B targeting to the abscission site. Open Biol 4: 130190 doi:10.1098/rsob.130190

10. Amine ElN, KechadA, JananjiS, HicksonGRX (2013) Opposing actions of septins and Sticky on Anillin promote the transition from contractile to midbody ring. J Cell Biol 203: 487–504 doi:10.1083/jcb.201305053

11. GreenRA, MayersJR, WangS, LewellynL, DesaiA, et al. (2013) The midbody ring scaffolds the abscission machinery in the absence of midbody microtubules. J Cell Biol 203: 505–520 doi:10.1091/mbc.E06-01-0015

12. SerrãoVHB, AlessandroF, CaldasVEA, MarçalRL, PereiraHD, et al. (2011) Promiscuous interactions of human septins: the GTP binding domain of SEPT7 forms filaments within the crystal. FEBS Lett 585: 3868–3873 doi:10.1016/j.febslet.2011.10.043

13. SellinME, SandbladL, StenmarkS, GullbergM (2011) Deciphering the rules governing assembly order of mammalian septin complexes. Mol Biol Cell 22: 3152–3164 doi:10.1091/mbc.E11-03-0253

14. SaarikangasJ, BarralY (2011) The emerging functions of septins in metazoans. EMBO Rep 12: 1118–1126 doi:10.1038/embor.2011.193

15. SpiliotisET, KinoshitaM, NelsonWJ (2005) A mitotic septin scaffold required for Mammalian chromosome congression and segregation. Science 307: 1781–1785 doi:10.1126/science.1106823

16. KinoshitaM, KumarS, MizoguchiA, IdeC, KinoshitaA, et al. (1997) Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev 11: 1535–1547.

17. EsteyMP, Di Ciano-OliveiraC, FroeseCD, FungKYY, SteelsJD, et al. (2013) Mitotic regulation of sept9 by cdk1 and pin1 is important for the completion of cytokinesis. J Biol Chem 288: 30075–86 doi:10.1074/jbc.M113.474932

18. EsteyMP, Di Ciano-OliveiraC, FroeseCD, BejideMT, TrimbleWS (2010) Distinct roles of septins in cytokinesis: SEPT9 mediates midbody abscission. J Cell Biol 191: 741–749 doi:10.1083/jcb.201006031

19. SurkaMC, TsangCW, TrimbleWS (2002) The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis. Mol Biol Cell 13: 3532–3545 doi:10.1091/mbc.E02-01-0042

20. TooleyAJ, GildenJ, JacobelliJ, BeemillerP, TrimbleWS, et al. (2009) Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nat Cell Biol 11: 17–26 doi:10.1038/ncb1808

21. FüchtbauerA, LassenLB, JensenAB, HowardJ, QuirogaAS, et al. (2011) Septin9 is involved in septin filament formation and cellular stability. Biological Chemistry 392: 769–777 doi:10.1515/BC.2011.088

22. RöselerS, SandrockK, BartschI, BusseA, OmranH, et al. (2011) Lethal phenotype of mice carrying a Sept11 null mutation. Biological Chemistry 392: 779–781 doi:10.1515/BC.2011.093

23. KinoshitaM, FieldCM, CoughlinML, StraightAF, MitchisonTJ (2002) Self- and actin-templated assembly of Mammalian septins. Dev Cell 3: 791–802.

24. SteigemannP, WurzenbergerC, SchmitzMHA, HeldM, GuizettiJ, et al. (2009) Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136: 473–484 doi:10.1016/j.cell.2008.12.020

25. KremerBE, HaysteadT, MacaraIG (2005) Mammalian septins regulate microtubule stability through interaction with the microtubule-binding protein MAP4. Mol Biol Cell 16: 4648–4659 doi:10.1091/mbc.E05-03-0267

26. Ageta-IshiharaN, MiyataT, OhshimaC, WatanabeM, SatoY, et al. (2013) Septins promote dendrite and axon development by negatively regulating microtubule stability via HDAC6-mediated deacetylation. Nature Communications 4: 2532 doi:10.1038/ncomms3532

27. MaetzigT, GallaM, BrugmanMH, LoewR, BaumC, et al. (2010) Mechanisms controlling titer and expression of bidirectional lentiviral and gammaretroviral vectors. Gene Ther 17: 400–411 doi:10.1038/gt.2009.129

28. de BoerJ, WilliamsA, SkavdisG, HarkerN, ColesM, et al. (2003) Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur J Immunol 33: 314–325 doi:10.1002/immu.200310005

29. SobelA (1991) Stathmin: a relay phosphoprotein for multiple signal transduction? Trends in biochemical sciences 16: 301–305.

30. LawlerS (1998) Microtubule dynamics: if you need a shrink try stathmin/Op18. Curr Biol 8: R212–R214.

31. IwaseM, OkadaS, OguchiT, Toh-eA (2004) Forchlorfenuron, a phenylurea cytokinin, disturbs septin organization in Saccharomyces cerevisiae. Genes Genet Syst 79: 199–206.

32. HuQ, NelsonWJ, SpiliotisET (2008) Forchlorfenuron alters mammalian septin assembly, organization, and dynamics. J Biol Chem 283: 29563–29571 doi:10.1074/jbc.M804962200

33. KoppelJ, BoutterinMC, DoyeV, Peyro-Saint-PaulH, SobelA (1990) Developmental tissue expression and phylogenetic conservation of stathmin, a phosphoprotein associated with cell regulations. J Biol Chem 265: 3703–3707.

34. YoshieM, TamuraK, HaraT, KogoH (2006) Expression of stathmin family genes in the murine uterus during early pregnancy. Mol Reprod Dev 73: 164–172 doi:10.1002/mrd.20408

35. WoodS, SivaramakrishnanG, EngelJ, ShafikhaniSH (2011) Cell migration regulates the kinetics of cytokinesis. Cell Cycle 10: 648–654 doi:10.4161/cc.10.4.14813

36. ZangJH, CavetG, SabryJH, WagnerP, MooresSL, et al. (1997) On the role of myosin-II in cytokinesis: division of Dictyostelium cells under adhesive and nonadhesive conditions. MBoC 8: 2617–2629.

37. FounounouN, LoyerN, Le BorgneR (2013) Septins Regulate the Contractility of the Actomyosin Ring to Enable Adherens Junction Remodeling during Cytokinesis of Epithelial Cells. Dev Cell 24: 242–255 doi:10.1016/j.devcel.2013.01.008

38. AlliE, YangJ-M, HaitWN (2007) Silencing of stathmin induces tumor-suppressor function in breast cancer cell lines harboring mutant p53. Oncogene 26: 1003–1012 doi:10.1038/sj.onc.1209864

39. SonegoM, SchiappacassiM, LovisaS, Dall'AcquaA, BagnoliM, et al. (2013) Stathmin regulates mutant p53 stability and transcriptional activity in ovarian cancer. EMBO Mol Med 5: 707–722 doi:10.1002/emmm.201201504

40. WuY, WangC, SunH, LeRoithD, YakarS (2009) High-efficient FLPo deleter mice in C57BL/6J background. PLoS ONE 4: e8054 doi:10.1371/journal.pone.0008054

41. LewandoskiM, WassarmanKM, MartinGR (1997) Zp3-cre, a transgenic mouse line for the activation or inactivation of loxP-flanked target genes specifically in the female germ line. Curr Biol 7: 148–151.

42. HeinzN, SchambachA, GallaM, MaetzigT, BaumC, et al. (2011) Retroviral and transposon-based tet-regulated all-in-one vectors with reduced background expression and improved dynamic range. Hum Gene Ther 22: 166–176 doi:10.1089/hum.2010.099

43. MenonMB, SchwermannJ, SinghAK, Franz-WachtelM, PabstO, et al. (2010) p38 MAP kinase and MAPKAP kinases MK2/3 cooperatively phosphorylate epithelial keratins. J Biol Chem 285: 33242–33251 doi:10.1074/jbc.M110.132357

44. LiuX, MishraP, YuS, BeckmannJ, WendlandM, et al. (2011) Tolerance induction towards cardiac allografts under costimulation blockade is impaired in CCR7-deficient animals but can be restored by adoptive transfer of syngeneic plasmacytoid dendritic cells. Eur J Immunol 41: 611–623 doi:10.1002/eji.201040877

45. HeuserM, YunH, BergT, YungE, ArgiropoulosB, et al. (2011) Cell of origin in AML: susceptibility to MN1-induced transformation is regulated by the MEIS1/AbdB-like HOX protein complex. Cancer Cell 20: 39–52 doi:10.1016/j.ccr.2011.06.020

46. MenonMB, RonkinaN, SchwermannJ, KotlyarovA, GaestelM (2009) Fluorescence-based quantitative scratch wound healing assay demonstrating the role of MAPKAPK-2/3 in fibroblast migration. Cell Motil Cytoskeleton 66: 1041–1047 doi:10.1002/cm.20418

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#