#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Playing RNase P Evolution: Swapping the RNA Catalyst for a Protein Reveals Functional Uniformity of Highly Divergent Enzyme Forms


Many biocatalysts apparently evolved independently more than once, leading to structurally unrelated macromolecules catalyzing the same biochemical reaction. The RNase P enzyme family is an exceptional case of this phenomenon called convergent evolution. RNase P enzymes use not only unrelated, but chemically distinct macromolecules, either RNA or protein, to catalyze a specific step in the biogenesis of transfer RNAs, the ubiquitous adaptor molecules in protein synthesis. However, this fundamental difference in the identity of the actual catalyst, together with a broad variation in structural complexity of the diverse forms of RNase P, cast doubts on their functional equivalence. Here we compared two of the structurally most extreme variants of RNase P by replacing the yeast nuclear enzyme, a 10-subunit RNA-protein complex, with a single-protein from plants representing the apparently simplest form of RNase P. Surprisingly, the viability and fitness of these RNase P-swapped yeasts and their molecular analyses demonstrated the full functional exchangeability of the highly dissimilar enzymes. The RNase P family, with its combination of structural diversity and functional uniformity, thus not only truly represents an extraordinary case of convergent evolution, but also demonstrates that increased structural complexity does not necessarily entail broadened functionality, but may rather be the result of “neutral” evolutionary mechanisms.


Vyšlo v časopise: Playing RNase P Evolution: Swapping the RNA Catalyst for a Protein Reveals Functional Uniformity of Highly Divergent Enzyme Forms. PLoS Genet 10(8): e32767. doi:10.1371/journal.pgen.1004506
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004506

Souhrn

Many biocatalysts apparently evolved independently more than once, leading to structurally unrelated macromolecules catalyzing the same biochemical reaction. The RNase P enzyme family is an exceptional case of this phenomenon called convergent evolution. RNase P enzymes use not only unrelated, but chemically distinct macromolecules, either RNA or protein, to catalyze a specific step in the biogenesis of transfer RNAs, the ubiquitous adaptor molecules in protein synthesis. However, this fundamental difference in the identity of the actual catalyst, together with a broad variation in structural complexity of the diverse forms of RNase P, cast doubts on their functional equivalence. Here we compared two of the structurally most extreme variants of RNase P by replacing the yeast nuclear enzyme, a 10-subunit RNA-protein complex, with a single-protein from plants representing the apparently simplest form of RNase P. Surprisingly, the viability and fitness of these RNase P-swapped yeasts and their molecular analyses demonstrated the full functional exchangeability of the highly dissimilar enzymes. The RNase P family, with its combination of structural diversity and functional uniformity, thus not only truly represents an extraordinary case of convergent evolution, but also demonstrates that increased structural complexity does not necessarily entail broadened functionality, but may rather be the result of “neutral” evolutionary mechanisms.


Zdroje

1. LaiLB, VioqueA, KirsebomLA, GopalanV (2010) Unexpected diversity of RNase P, an ancient tRNA processing enzyme: challenges and prospects. FEBS Lett 584: 287–296.

2. Liu F, Altman S, editors (2010) Ribonuclease P. New York: Springer. 283 p.

3. EsakovaO, KrasilnikovAS (2010) Of proteins and RNA: the RNase P/MRP family. RNA 16: 1725–1747.

4. HartmannRK, GöβringerM, SpäthB, FischerS, MarchfelderA (2009) The Making of tRNAs and More - RNase P and tRNase Z. Prog Nucleic Acid Res Mol Biol. 85: 319–368.

5. Ellis JC, Brown JW (2010) The evolution of RNase P and its RNA. In: Liu F, Altman S, editors. Ribonuclease P. New York: Springer. pp. 17–40.

6. Walker SC, Marvin MC, Engelke D (2010) Eukaryote RNase P and RNase MRP. In: Liu F, Altman S, editors. Ribonuclease P. New York: Springer. pp. 173–202.

7. JarrousN, GopalanV (2010) Archaeal/eukaryal RNase P: subunits, functions and RNA diversification. Nucleic Acids Res 38: 7885–7894.

8. Lai LB, Cho I-M, Chen W-Y, Gopalan V (2010) Archaeal RNase P: a mosaic of its bacterial and eukaryal relatives. In: Liu F, Altman S, editors. Ribonuclease P. New York: Springer. pp. 153–172.

9. GobertA, GutmannB, TaschnerA, GöβringerM, HolzmannJ, et al. (2010) A single Arabidopsis organellar protein has RNase P activity. Nat Struct Mol Biol 17: 740–744.

10. GutmannB, GobertA, GiegéP (2012) PRORP proteins support RNase P activity in both organelles and the nucleus in Arabidopsis. Genes Dev 26: 1022–1027.

11. TaschnerA, WeberC, BuzetA, HartmannRK, HartigA, et al. (2012) Nuclear RNase P of Trypanosoma brucei: a single protein in place of the multi-component RNA-protein complex. Cell Rep 2: 19–25.

12. HolzmannJ, FrankP, LöfflerE, BennettKL, GernerC, et al. (2008) RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135: 462–474.

13. MarvinMC, EngelkeDR (2009) Broadening the mission of an RNA enzyme. J Cell Biochem 108: 1244–1251.

14. MarvinMC, EngelkeDR (2009) RNase P: increased versatility through protein complexity? RNA Biol 6: 40–42.

15. HowardMJ, LiuX, LimWH, KlemmBP, KoutmosM, et al. (2013) RNase P enzymes: Divergent scaffolds for a conserved biological reaction. RNA Biol 10: 909–914.

16. PavlovaLV, GöβringerM, WeberC, BuzetA, RossmanithW, et al. (2012) tRNA processing by protein-only versus RNA-based RNase P: kinetic analysis reveals mechanistic differences. ChemBioChem 13: 2270–2276.

17. RuohonenL, AaltoMK, KeränenS (1995) Modifications to the ADH1 promoter of Saccharomyces cerevisiae for efficient production of heterologous proteins. J Biotechnol 39: 193–203.

18. MüllederM, CapuanoF, PirP, ChristenS, SauerU, et al. (2012) A prototrophic deletion mutant collection for yeast metabolomics and systems biology. Nat Biotechnol 30: 1176–1178.

19. MarvinMC, WalkerSC, FierkeCA, EngelkeDR (2011) Binding and cleavage of unstructured RNA by nuclear RNase P. RNA. 17: 1429–1440.

20. CoughlinDJ, PleissJA, WalkerSC, WhitworthGB, EngelkeDR (2008) Genome-wide search for yeast RNase P substrates reveals role in maturation of intron-encoded box C/D small nucleolar RNAs. Proc Natl Acad Sci USA 105: 12218–12223.

21. MarvinMC, Clauder-MünsterS, WalkerSC, SarkeshikA, YatesJR3rd, et al. (2011) Accumulation of noncoding RNA due to an RNase P defect in Saccharomyces cerevisiae. RNA 17: 1441–1450.

22. MnaimnehS, DavierwalaAP, HaynesJ, MoffatJ, PengW-T, et al. (2004) Exploration of essential gene functions via titratable promoter alleles. Cell 118: 31–44.

23. BrachmannCB, DaviesA, CostGJ, CaputoE, LiJ, et al. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115–132.

24. van DijkenJP, BauerJ, BrambillaL, DubocP, FrancoisJM, et al. (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 26: 706–714.

25. NijkampJF, van den BroekM, DatemaE, de KokS, BosmanL, et al. (2012) De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 11: 36.

26. BertrandE, Houser-ScottF, KendallA, SingerRH, EngelkeDR (1998) Nucleolar localization of early tRNA processing. Genes Dev 12: 2463–2468.

27. SunwooH, DingerME, WiluszJE, AmaralPP, MattickJS, et al. (2009) MEN ε/β nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res 19: 347–359.

28. WiluszJE, FreierSM, SpectorDL (2008) 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135: 919–932.

29. SamantaMP, TongprasitW, SethiH, ChinC-S, StolcV (2006) Global identification of noncoding RNAs in Saccharomyces cerevisiae by modulating an essential RNA processing pathway. Proc Natl Acad Sci USA 103: 4192–4197.

30. Pagán-RamosE, LeeY, EngelkeDR (1996) A conserved RNA motif involved in divalent cation utilization by nuclear RNase P. RNA 2: 1100–1109.

31. ReinerR, Ben-AsouliY, KrilovetzkyI, JarrousN (2006) A role for the catalytic ribonucleoprotein RNase P in RNA polymerase III transcription. Genes Dev 20: 1621–1635.

32. ReinerR, Krasnov-YoeliN, DehtiarY, JarrousN (2008) Function and Assembly of a Chromatin-Associated RNase P that Is Required for Efficient Transcription by RNA Polymerase I. PLoS ONE 3: e4072.

33. IshiguroA, KassavetisGA, GeiduschekEP (2002) Essential roles of Bdp1, a subunit of RNA polymerase III initiation factor TFIIIB, in transcription and tRNA processing. Mol Cell Biol 22: 3264–3275.

34. JarrousN, ReinerR (2007) Human RNase P: a tRNA-processing enzyme and transcription factor. Nucleic Acids Res 35: 3519–3524.

35. StoltzfusA (1999) On the possibility of constructive neutral evolution. J Mol Evol 49: 169–181.

36. LukesJ, ArchibaldJM, KeelingPJ, DoolittleWF, GrayMW (2011) How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life 63: 528–537.

37. KikovskaE, SvärdSG, KirsebomLA (2007) Eukaryotic RNase P RNA mediates cleavage in the absence of protein. Proc Natl Acad Sci USA 104: 2062–2067.

38. WillCL, LührmannR (2001) Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol 13: 290–301.

39. RossmanithW (2012) Of P and Z: Mitochondrial tRNA processing enzymes. Biochim Biophys Acta 1819: 1017–1026.

40. GalperinMY, KooninEV (2012) Divergence and convergence in enzyme evolution. J Biol Chem 287: 21–28.

41. OmelchenkoMV, GalperinMY, WolfYI, KooninEV (2010) Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution. Biol Direct 5: 31.

42. ChristianT, EviliaC, WilliamsS, HouYM (2004) Distinct origins of tRNA(m1G37) methyltransferase. J Mol Biol 339: 707–719.

43. PopowJ, SchleifferA, MartinezJ (2012) Diversity and roles of (t)RNA ligases. Cell Mol Life Sci 69: 2657–2670.

44. WachA, BrachatA, PöhlmannR, PhilippsenP (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10: 1793–1808.

45. GüldenerU, HeckS, FielderT, BeinhauerJ, HegemannJH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24: 2519–2524.

46. GueldenerU, HeinischJ, KoehlerGJ, VossD, HegemannJH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30: e23.

47. GietzRD, SuginoA (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74: 527–534.

48. HuberA, KochJ, KraglerF, BrocardC, HartigA (2012) A subtle interplay between three Pex11 proteins shapes de novo formation and fission of peroxisomes. Traffic 13: 157–167.

49. JankeC, MagieraMM, RathfelderN, TaxisC, ReberS, et al. (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21: 947–962.

50. Amberg DC, Burke DJ, Strathern JN (2005) Methods in yeast genetics : a Cold Spring Harbor Laboratory course manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press. 230 p.

51. ShermanF (2002) Getting started with yeast. Methods Enzymol 350: 3–41.

52. GietzRD, WoodsRA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350: 87–96.

53. JohnstonM, RilesL, HegemannJH (2002) Gene disruption. Methods Enzymol 350: 290–315.

54. ToussaintM, ConconiA (2006) High-throughput and sensitive assay to measure yeast cell growth: a bench protocol for testing genotoxic agents. Nat Protoc 1: 1922–1928.

55. WarringerJ, BlombergA (2003) Automated screening in environmental arrays allows analysis of quantitative phenotypic profiles in Saccharomyces cerevisiae. Yeast 20: 53–67.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#