-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Netrins and Wnts Function Redundantly to Regulate Antero-Posterior and Dorso-Ventral Guidance in
While ample information was gathered in past decades on identifying guidance cues and their downstream mediators, very little is known about how the information from multiple extracellular cues is integrated within the cell to generate normal patterning. Netrin and Wnt signaling pathways are both critical to multiple developmental processes and play key roles in normal development as well as in malignancies. The UNC-6/Netrin guidance cue has a conserved role in guiding cell and growth cone migrations along the dorso-ventral axis, whereas Wnts are critical for determining polarity and guidance along the antero-posterior axis. In this study we show that these two signaling pathways function redundantly in both antero-posterior and dorso-ventral guidance as well as in processes essential for viability. Furthermore, we demonstrate that a fine balance between Wnt and Netrin signaling pathways is critical for proper polarity establishment and identify Wnt signaling as one of the long sought mechanisms that signal in parallel to Netrin to promote dorso-ventral guidance of cells and axons in Caenorhabditis elegans. These findings pave the way to unraveling the broader roles of Wnt and Netrin signaling pathways and provide a conceptually novel view of how antero-posterior and dorso-ventral guidance mechanisms are orchestrated.
Vyšlo v časopise: Netrins and Wnts Function Redundantly to Regulate Antero-Posterior and Dorso-Ventral Guidance in. PLoS Genet 10(6): e32767. doi:10.1371/journal.pgen.1004381
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004381Souhrn
While ample information was gathered in past decades on identifying guidance cues and their downstream mediators, very little is known about how the information from multiple extracellular cues is integrated within the cell to generate normal patterning. Netrin and Wnt signaling pathways are both critical to multiple developmental processes and play key roles in normal development as well as in malignancies. The UNC-6/Netrin guidance cue has a conserved role in guiding cell and growth cone migrations along the dorso-ventral axis, whereas Wnts are critical for determining polarity and guidance along the antero-posterior axis. In this study we show that these two signaling pathways function redundantly in both antero-posterior and dorso-ventral guidance as well as in processes essential for viability. Furthermore, we demonstrate that a fine balance between Wnt and Netrin signaling pathways is critical for proper polarity establishment and identify Wnt signaling as one of the long sought mechanisms that signal in parallel to Netrin to promote dorso-ventral guidance of cells and axons in Caenorhabditis elegans. These findings pave the way to unraveling the broader roles of Wnt and Netrin signaling pathways and provide a conceptually novel view of how antero-posterior and dorso-ventral guidance mechanisms are orchestrated.
Zdroje
1. IshiiN, WadsworthWG, SternBD, CulottiJG, HedgecockEM (1992) UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron 9 : 873–881.
2. KennedyTE, SerafiniT, de la TorreJR, Tessier-LavigneM (1994) Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78 : 425–435.
3. SerafiniT, ColamarinoSA, LeonardoED, WangH, BeddingtonR, et al. (1996) Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87 : 1001–1014 doi:10.1016/S0092-8674(00)81795-X
4. SilhankovaM, KorswagenHC (2007) Migration of neuronal cells along the anterior-posterior body axis of C. elegans: Wnts are in control. Curr Opin Genet Dev 17 : 320–325 doi:10.1016/j.gde.2007.05.007
5. HedgecockEM, CulottiJG, HallDH (1990) The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4 : 61–85.
6. Leung-HagesteijnC, SpenceAM, SternBD, ZhouY, SuMW, et al. (1992) UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell 71 : 289–299.
7. ChanSS, ZhengH, SuMW, WilkR, KilleenMT, et al. (1996) UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell 87 : 187–195.
8. LyuksyutovaAI, LuC, MilanesioN, KingLA, GuoN, et al. (2003) Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science 302 : 1984–1988 doi:10.1126/science.1089610
9. LiuY, ShiJ, LuC-C, WangZ-B, LyuksyutovaAI, et al. (2005) Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract. Nat Neurosci 8 : 1151–1159 doi:10.1038/nn1520
10. EisenmannDM (2005) Wnt signaling. WormBook: 1–17. doi:10.1895/wormbook.1.7.1
11. WhangboJ, KenyonC (1999) A Wnt signaling system that specifies two patterns of cell migration in C. elegans. Mol Cell 4 : 851–858.
12. BakerKA, MooreSW, JarjourAA, KennedyTE (2006) When a diffusible axon guidance cue stops diffusing: roles for netrins in adhesion and morphogenesis. Curr Opin Neurobiol 16 : 529–534 doi:10.1016/j.conb.2006.08.002
13. GoldsteinB, TakeshitaH, MizumotoK, SawaH (2006) Wnt signals can function as positional cues in establishing cell polarity. Dev Cell 10 : 391–396 doi:10.1016/j.devcel.2005.12.016
14. HilliardMa, BargmannCI (2006) Wnt signals and frizzled activity orient anterior-posterior axon outgrowth in C. elegans. Dev Cell 10 : 379–390 doi:10.1016/j.devcel.2006.01.013
15. PanC-L, HowellJE, ClarkSG, HilliardM, CordesS, et al. (2006) Multiple Wnts and frizzled receptors regulate anteriorly directed cell and growth cone migrations in Caenorhabditis elegans. Dev Cell 10 : 367–377 doi:10.1016/j.devcel.2006.02.010
16. HardinJ, KingRS (2008) The long and the short of Wnt signaling in C. elegans. Curr Opin Genet Dev 18 : 362–367 doi:10.1016/j.gde.2008.06.006
17. YangP-T, LorenowiczMJ, SilhankovaM, CoudreuseDYM, BetistMC, et al. (2008) Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev Cell 14 : 140–147 doi:10.1016/j.devcel.2007.12.004
18. CruciatC-M, NiehrsC (2013) Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol 5: a015081 doi:10.1101/cshperspect.a015081
19. DicksonBJ (2005) Wnts send axons up and down the spinal cord. Nat Neurosci 8 : 1130–1132 doi:10.1038/nn0905-1130
20. MiddelkoopTC, WilliamsL, YangP-T, LuchtenbergJ, BetistMC, et al. (2012) The thrombospondin repeat containing protein MIG-21 controls a left-right asymmetric Wnt signaling response in migrating C. elegans neuroblasts. Dev Biol 361 : 338–348 doi:10.1016/j.ydbio.2011.10.029
21. TeichmannHM, ShenK (2011) UNC-6 and UNC-40 promote dendritic growth through PAR-4 in Caenorhabditis elegans neurons. Nat Neurosci 14 : 165–172 doi:10.1038/nn.2717
22. Levy-StrumpfN, CulottiJG (2007) VAB-8, UNC-73 and MIG-2 regulate axon polarity and cell migration functions of UNC-40 in C. elegans. Nat Neurosci 10 : 161–168 doi:10.1038/nn1835
23. Watari-GoshimaN, OguraK, WolfFW, GoshimaY, GarrigaG (2007) C. elegans VAB-8 and UNC-73 regulate the SAX-3 receptor to direct cell and growth-cone migrations. Nat Neurosci 10 : 169–176 doi:10.1038/nn1834
24. PrasadBC, ClarkSG (2006) Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans. Development 133 : 1757–1766 doi:10.1242/dev.02357
25. WongM-C, SchwarzbauerJE (2012) Gonad morphogenesis and distal tip cell migration in the Caenorhabditis elegans hermaphrodite. Wiley Interdiscip Rev Dev Biol 1 : 519–531 doi:10.1002/wdev.45
26. NishiwakiK (1999) Mutations affecting symmetrical migration of distal tip cells in Caenorhabditis elegans. Genetics 152 : 985–997.
27. HarterinkM, KimDH, MiddelkoopTC, DoanTD, van OudenaardenA, et al. (2011) Neuroblast migration along the anteroposterior axis of C. elegans is controlled by opposing gradients of Wnts and a secreted Frizzled-related protein. Development 138 : 2915–2924 doi:10.1242/dev.064733
28. MerzDC, AlvesG, KawanoT, ZhengH, CulottiJG (2003) UNC-52/Perlecan affects gonadal leader cell migrations in c. elegans hermaphrodites through alterations in growth factor signaling. Dev Biol 256 : 174–187 doi:10.1016/S0012-1606(03)00014-9
29. CabelloJ, NeukommLJ, GünesdoganU, BurkartK, CharetteSJ, et al. (2010) The Wnt pathway controls cell death engulfment, spindle orientation, and migration through CED-10/Rac. PLoS Biol 8: e1000297 doi:10.1371/journal.pbio.1000297
30. InoueT, OzHS, WilandD, GharibS, DeshpandeR, et al. (2004) C. elegans LIN-18 is a Ryk ortholog and functions in parallel to LIN-17/Frizzled in Wnt signaling. Cell 118 : 795–806 doi:10.1016/j.cell.2004.09.001
31. ZinovyevaAY, ForresterWC (2005) The C. elegans Frizzled CFZ-2 is required for cell migration and interacts with multiple Wnt signaling pathways. Dev Biol 285 : 447–461 doi:10.1016/j.ydbio.2005.07.014
32. ZinovyevaAY, YamamotoY, SawaH, ForresterWC (2008) Complex network of Wnt signaling regulates neuronal migrations during Caenorhabditis elegans development. Genetics 179 : 1357–1371 doi:10.1534/genetics.108.090290
33. WhangboJ, HarrisJ, KenyonC (2000) Multiple levels of regulation specify the polarity of an asymmetric cell division in C. elegans. Development 127 : 4587–4598.
34. WadsworthWG, BhattH, HedgecockEM (1996) Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron 16 : 35–46.
35. HamelinM, ZhouY, SuMW, ScottIM, CulottiJG (1993) Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steer their axons dorsally. Nature 364 : 327–330 doi:10.1038/364327a0
36. SuM, MerzDC, KilleenMT, ZhouY, ZhengH, et al. (2000) Regulation of the UNC-5 netrin receptor initiates the first reorientation of migrating distal tip cells in Caenorhabditis elegans. Development 127 : 585–594.
37. KulkarniG, XuZ, MohamedaM, LiH, TangX, et al. (2013) Experimental evidence for UNC-6 (netrin) axon guidance by stochastic fluctuations of intracellular UNC-40 (DCC) outgrowth activity. Biol Open 6 doi:10.1242/bio.20136346
38. ItohB, HiroseT, TakataN, NishiwakiK, KogaM, et al. (2005) SRC-1, a non-receptor type of protein tyrosine kinase, controls the direction of cell and growth cone migration in C. elegans. Development 132 : 5161–5172 doi:10.1242/dev.02103
39. GumiennyT, BrugneraE (2001) CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107 : 27–41.
40. LundquistEa, ReddienPW, HartwiegE, HorvitzHR, BargmannCI (2001) Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis. Development 128 : 4475–4488.
41. BaumPD, GarrigaG (1997) Neuronal migrations and axon fasciculation are disrupted in ina-1 integrin mutants. Neuron 19 : 51–62.
42. GreenJL, InoueT, SternbergPW (2008) Opposing Wnt pathways orient cell polarity during organogenesis. Cell 134 : 646–656 doi:10.1016/j.cell.2008.06.026
43. LeeJ, MarstonDJ, WalstonT, HardinJ, HalberstadtA, et al. (2006) Wnt/Frizzled Signaling Controls C. elegans Gastrulation by Activating Actomyosin Contractility. Curr Biol 16 : 1986–1997 doi:10.1016/j.cub.2006.08.090.Wnt/Frizzled
44. ZielJ, SherwoodD (2010) Roles for netrin signaling outside of axon guidance: a view from the worm. Dev Dyn 239 : 1296–1305 doi:10.1002/dvdy.22225.Roles
45. CirulliV, YebraM (2007) Netrins: beyond the brain. Nat Rev Mol Cell Biol 8 : 296–306 doi:10.1038/nrm2142
46. Colón-RamosDA, MargetaMA, ShenK (2007) Glia promote local synaptogenesis through UNC-6 (netrin) signaling in C. elegans. Science 318 : 103–106 doi:10.1126/science.1143762
47. PoonVY, KlassenMP, ShenK (2008) UNC-6/netrin and its receptor UNC-5 locally exclude presynaptic components from dendrites. Nature 455 : 669–673 doi:10.1038/nature07291
48. DalpeG, ZhengH, BrownL, CulottiJ (2012) Semaphorin-1 and Netrin Signal in Parallel and Permissively to Position the Male Ray 1 Sensillum in Caenorhabditis elegans. Genetics 192 : 959–971 doi:10.1534/genetics.112.144253
49. ParkM, ShenK (2012) WNTs in synapse formation and neuronal circuitry. EMBO J 31 : 2697–2704 doi:10.1038/emboj.2012.145
50. HerrP, HausmannG, BaslerK (2012) WNT secretion and signalling in human disease. Trends Mol Med 18 : 483–493 doi:10.1016/j.molmed.2012.06.008
51. PolakisP (2012) Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4 doi:10.1101/cshperspect.a008052
52. AntebiA, CulottiJG, HedgecockEM (1998) daf-12 regulates developmental age and the dauer alternative in Caenorhabditis elegans. Development 125 : 1191–1205.
53. AntebiA, YehW-H, TaitD, HedgecockEM, RiddleDL (2000) daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes & Dev 14 : 1512–1527 doi:10.1101/gad.14.12.1512
54. BhatRa, StaufferB, KommBS, BodinePVN (2007) Structure-function analysis of secreted frizzled-related protein-1 for its Wnt antagonist function. J Cell Biochem 102 : 1519–1528 doi:10.1002/jcb.21372
55. BrennerS (1974) The genetics of Caenorhabditis elegans. Genetics 77 : 71–94.
56. TimmonsL, Firea (1998) Specific interference by ingested dsRNA. Nature 395 : 854 doi:10.1038/27579
57. Ahringer J. (n.d.) Reverse genetics. doi:doi/10.1895/wormbook.1.7.1.
58. WuM, HermanMA (2007) Asymmetric localizations of LIN-17/Fz and MIG-5/Dsh are involved in the asymmetric B cell division in C. elegans. Dev Biol 303 : 650–662.
Štítky
Genetika Reprodukčná medicína
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2014 Číslo 6- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- Inflammation: Gone with Translation
- Recombination Accelerates Adaptation on a Large-Scale Empirical Fitness Landscape in HIV-1
- Caspase Inhibition in Select Olfactory Neurons Restores Innate Attraction Behavior in Aged
- Accurate, Model-Based Tuning of Synthetic Gene Expression Using Introns in
- A Novel Peptidoglycan Binding Protein Crucial for PBP1A-Mediated Cell Wall Biogenesis in
- Ancient DNA Analysis of 8000 B.C. Near Eastern Farmers Supports an Early Neolithic Pioneer Maritime Colonization of Mainland Europe through Cyprus and the Aegean Islands
- The Epidermal Growth Factor Receptor Critically Regulates Endometrial Function during Early Pregnancy
- Introgression from Domestic Goat Generated Variation at the Major Histocompatibility Complex of Alpine Ibex
- Netrins and Wnts Function Redundantly to Regulate Antero-Posterior and Dorso-Ventral Guidance in
- Coordination of Wing and Whole-Body Development at Developmental Milestones Ensures Robustness against Environmental and Physiological Perturbations
- Phenotypic Dissection of Bone Mineral Density Reveals Skeletal Site Specificity and Facilitates the Identification of Novel Loci in the Genetic Regulation of Bone Mass Attainment
- Deep Evolutionary Comparison of Gene Expression Identifies Parallel Recruitment of -Factors in Two Independent Origins of C Photosynthesis
- Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity
- Translational Regulation of Specific mRNAs Controls Feedback Inhibition and Survival during Macrophage Activation
- Rosa26-GFP Direct Repeat (RaDR-GFP) Mice Reveal Tissue- and Age-Dependence of Homologous Recombination in Mammals
- Abnormal Type I Collagen Post-translational Modification and Crosslinking in a Cyclophilin B KO Mouse Model of Recessive Osteogenesis Imperfecta
- : Clonal Reinforcement Drives Evolution of a Simple Microbial Community
- Reviving the Dead: History and Reactivation of an Extinct L1
- Defective iA37 Modification of Mitochondrial and Cytosolic tRNAs Results from Pathogenic Mutations in TRIT1 and Its Substrate tRNA
- Early Back-to-Africa Migration into the Horn of Africa
- Aberrant Autolysosomal Regulation Is Linked to The Induction of Embryonic Senescence: Differential Roles of Beclin 1 and p53 in Vertebrate Spns1 Deficiency
- Microbial Succession in the Gut: Directional Trends of Taxonomic and Functional Change in a Birth Cohort of Spanish Infants
- Integrated Pathway-Based Approach Identifies Association between Genomic Regions at CTCF and CACNB2 and Schizophrenia
- Genetic Determinants of Long-Term Changes in Blood Lipid Concentrations: 10-Year Follow-Up of the GLACIER Study
- Palaeosymbiosis Revealed by Genomic Fossils of in a Strongyloidean Nematode
- Early Embryogenesis-Specific Expression of the Rice Transposon Enhances Amplification of the MITE
- PINK1-Mediated Phosphorylation of Parkin Boosts Parkin Activity in
- OsHUS1 Facilitates Accurate Meiotic Recombination in Rice
- Genetic Background Drives Transcriptional Variation in Human Induced Pluripotent Stem Cells
- Pervasive Divergence of Transcriptional Gene Regulation in Caenorhabditis Nematodes
- N-WASP Is Required for Structural Integrity of the Blood-Testis Barrier
- The Transcription Factor TFII-I Promotes DNA Translesion Synthesis and Genomic Stability
- An Operon of Three Transcriptional Regulators Controls Horizontal Gene Transfer of the Integrative and Conjugative Element ICE in B13
- Digital Genotyping of Macrosatellites and Multicopy Genes Reveals Novel Biological Functions Associated with Copy Number Variation of Large Tandem Repeats
- ATRA-Induced Cellular Differentiation and CD38 Expression Inhibits Acquisition of BCR-ABL Mutations for CML Acquired Resistance
- The EJC Binding and Dissociating Activity of PYM Is Regulated in
- JNK Controls the Onset of Mitosis in Planarian Stem Cells and Triggers Apoptotic Cell Death Required for Regeneration and Remodeling
- Mouse Y-Linked and Are Expressed during the Male-Specific Interphase between Meiosis I and Meiosis II and Promote the 2 Meiotic Division
- Rasa3 Controls Megakaryocyte Rap1 Activation, Integrin Signaling and Differentiation into Proplatelet
- Transcriptional Control of Steroid Biosynthesis Genes in the Prothoracic Gland by Ventral Veins Lacking and Knirps
- Souffle/Spastizin Controls Secretory Vesicle Maturation during Zebrafish Oogenesis
- The POU Factor Ventral Veins Lacking/Drifter Directs the Timing of Metamorphosis through Ecdysteroid and Juvenile Hormone Signaling
- The First Endogenous Herpesvirus, Identified in the Tarsier Genome, and Novel Sequences from Primate Rhadinoviruses and Lymphocryptoviruses
- Sequence of a Complete Chicken BG Haplotype Shows Dynamic Expansion and Contraction of Two Gene Lineages with Particular Expression Patterns
- Background Selection as Baseline for Nucleotide Variation across the Genome
- CPF-Associated Phosphatase Activity Opposes Condensin-Mediated Chromosome Condensation
- The Effects of Codon Context on Translation Speed
- Glycogen Synthase Kinase (GSK) 3β Phosphorylates and Protects Nuclear Myosin 1c from Proteasome-Mediated Degradation to Activate rDNA Transcription in Early G1 Cells
- Regulation of Gene Expression in Autoimmune Disease Loci and the Genetic Basis of Proliferation in CD4 Effector Memory T Cells
- Muscle Structure Influences Utrophin Expression in Mice
- BLMP-1/Blimp-1 Regulates the Spatiotemporal Cell Migration Pattern in
- Identification of Late Larval Stage Developmental Checkpoints in Regulated by Insulin/IGF and Steroid Hormone Signaling Pathways
- Transport of Magnesium by a Bacterial Nramp-Related Gene
- Sgo1 Regulates Both Condensin and Ipl1/Aurora B to Promote Chromosome Biorientation
- The HY5-PIF Regulatory Module Coordinates Light and Temperature Control of Photosynthetic Gene Transcription
- The Rim15-Endosulfine-PP2A Signalling Module Regulates Entry into Gametogenesis and Quiescence Distinct Mechanisms in Budding Yeast
- Regulation of Hfq by the RNA CrcZ in Carbon Catabolite Repression
- Loss of a Neural AMP-Activated Kinase Mimics the Effects of Elevated Serotonin on Fat, Movement, and Hormonal Secretions
- Positive Feedback of Expression Ensures Irreversible Meiotic Commitment in Budding Yeast
- Hecate/Grip2a Acts to Reorganize the Cytoskeleton in the Symmetry-Breaking Event of Embryonic Axis Induction
- Regulatory Mechanisms That Prevent Re-initiation of DNA Replication Can Be Locally Modulated at Origins by Nearby Sequence Elements
- Speciation and Introgression between and
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Early Back-to-Africa Migration into the Horn of Africa
- PINK1-Mediated Phosphorylation of Parkin Boosts Parkin Activity in
- OsHUS1 Facilitates Accurate Meiotic Recombination in Rice
- An Operon of Three Transcriptional Regulators Controls Horizontal Gene Transfer of the Integrative and Conjugative Element ICE in B13
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy