#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Netrins and Wnts Function Redundantly to Regulate Antero-Posterior and Dorso-Ventral Guidance in


While ample information was gathered in past decades on identifying guidance cues and their downstream mediators, very little is known about how the information from multiple extracellular cues is integrated within the cell to generate normal patterning. Netrin and Wnt signaling pathways are both critical to multiple developmental processes and play key roles in normal development as well as in malignancies. The UNC-6/Netrin guidance cue has a conserved role in guiding cell and growth cone migrations along the dorso-ventral axis, whereas Wnts are critical for determining polarity and guidance along the antero-posterior axis. In this study we show that these two signaling pathways function redundantly in both antero-posterior and dorso-ventral guidance as well as in processes essential for viability. Furthermore, we demonstrate that a fine balance between Wnt and Netrin signaling pathways is critical for proper polarity establishment and identify Wnt signaling as one of the long sought mechanisms that signal in parallel to Netrin to promote dorso-ventral guidance of cells and axons in Caenorhabditis elegans. These findings pave the way to unraveling the broader roles of Wnt and Netrin signaling pathways and provide a conceptually novel view of how antero-posterior and dorso-ventral guidance mechanisms are orchestrated.


Vyšlo v časopise: Netrins and Wnts Function Redundantly to Regulate Antero-Posterior and Dorso-Ventral Guidance in. PLoS Genet 10(6): e32767. doi:10.1371/journal.pgen.1004381
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004381

Souhrn

While ample information was gathered in past decades on identifying guidance cues and their downstream mediators, very little is known about how the information from multiple extracellular cues is integrated within the cell to generate normal patterning. Netrin and Wnt signaling pathways are both critical to multiple developmental processes and play key roles in normal development as well as in malignancies. The UNC-6/Netrin guidance cue has a conserved role in guiding cell and growth cone migrations along the dorso-ventral axis, whereas Wnts are critical for determining polarity and guidance along the antero-posterior axis. In this study we show that these two signaling pathways function redundantly in both antero-posterior and dorso-ventral guidance as well as in processes essential for viability. Furthermore, we demonstrate that a fine balance between Wnt and Netrin signaling pathways is critical for proper polarity establishment and identify Wnt signaling as one of the long sought mechanisms that signal in parallel to Netrin to promote dorso-ventral guidance of cells and axons in Caenorhabditis elegans. These findings pave the way to unraveling the broader roles of Wnt and Netrin signaling pathways and provide a conceptually novel view of how antero-posterior and dorso-ventral guidance mechanisms are orchestrated.


Zdroje

1. IshiiN, WadsworthWG, SternBD, CulottiJG, HedgecockEM (1992) UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron 9: 873–881.

2. KennedyTE, SerafiniT, de la TorreJR, Tessier-LavigneM (1994) Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78: 425–435.

3. SerafiniT, ColamarinoSA, LeonardoED, WangH, BeddingtonR, et al. (1996) Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87: 1001–1014 doi:10.1016/S0092-8674(00)81795-X

4. SilhankovaM, KorswagenHC (2007) Migration of neuronal cells along the anterior-posterior body axis of C. elegans: Wnts are in control. Curr Opin Genet Dev 17: 320–325 doi:10.1016/j.gde.2007.05.007

5. HedgecockEM, CulottiJG, HallDH (1990) The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4: 61–85.

6. Leung-HagesteijnC, SpenceAM, SternBD, ZhouY, SuMW, et al. (1992) UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell 71: 289–299.

7. ChanSS, ZhengH, SuMW, WilkR, KilleenMT, et al. (1996) UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell 87: 187–195.

8. LyuksyutovaAI, LuC, MilanesioN, KingLA, GuoN, et al. (2003) Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science 302: 1984–1988 doi:10.1126/science.1089610

9. LiuY, ShiJ, LuC-C, WangZ-B, LyuksyutovaAI, et al. (2005) Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract. Nat Neurosci 8: 1151–1159 doi:10.1038/nn1520

10. EisenmannDM (2005) Wnt signaling. WormBook: 1–17. doi:10.1895/wormbook.1.7.1

11. WhangboJ, KenyonC (1999) A Wnt signaling system that specifies two patterns of cell migration in C. elegans. Mol Cell 4: 851–858.

12. BakerKA, MooreSW, JarjourAA, KennedyTE (2006) When a diffusible axon guidance cue stops diffusing: roles for netrins in adhesion and morphogenesis. Curr Opin Neurobiol 16: 529–534 doi:10.1016/j.conb.2006.08.002

13. GoldsteinB, TakeshitaH, MizumotoK, SawaH (2006) Wnt signals can function as positional cues in establishing cell polarity. Dev Cell 10: 391–396 doi:10.1016/j.devcel.2005.12.016

14. HilliardMa, BargmannCI (2006) Wnt signals and frizzled activity orient anterior-posterior axon outgrowth in C. elegans. Dev Cell 10: 379–390 doi:10.1016/j.devcel.2006.01.013

15. PanC-L, HowellJE, ClarkSG, HilliardM, CordesS, et al. (2006) Multiple Wnts and frizzled receptors regulate anteriorly directed cell and growth cone migrations in Caenorhabditis elegans. Dev Cell 10: 367–377 doi:10.1016/j.devcel.2006.02.010

16. HardinJ, KingRS (2008) The long and the short of Wnt signaling in C. elegans. Curr Opin Genet Dev 18: 362–367 doi:10.1016/j.gde.2008.06.006

17. YangP-T, LorenowiczMJ, SilhankovaM, CoudreuseDYM, BetistMC, et al. (2008) Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev Cell 14: 140–147 doi:10.1016/j.devcel.2007.12.004

18. CruciatC-M, NiehrsC (2013) Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol 5: a015081 doi:10.1101/cshperspect.a015081

19. DicksonBJ (2005) Wnts send axons up and down the spinal cord. Nat Neurosci 8: 1130–1132 doi:10.1038/nn0905-1130

20. MiddelkoopTC, WilliamsL, YangP-T, LuchtenbergJ, BetistMC, et al. (2012) The thrombospondin repeat containing protein MIG-21 controls a left-right asymmetric Wnt signaling response in migrating C. elegans neuroblasts. Dev Biol 361: 338–348 doi:10.1016/j.ydbio.2011.10.029

21. TeichmannHM, ShenK (2011) UNC-6 and UNC-40 promote dendritic growth through PAR-4 in Caenorhabditis elegans neurons. Nat Neurosci 14: 165–172 doi:10.1038/nn.2717

22. Levy-StrumpfN, CulottiJG (2007) VAB-8, UNC-73 and MIG-2 regulate axon polarity and cell migration functions of UNC-40 in C. elegans. Nat Neurosci 10: 161–168 doi:10.1038/nn1835

23. Watari-GoshimaN, OguraK, WolfFW, GoshimaY, GarrigaG (2007) C. elegans VAB-8 and UNC-73 regulate the SAX-3 receptor to direct cell and growth-cone migrations. Nat Neurosci 10: 169–176 doi:10.1038/nn1834

24. PrasadBC, ClarkSG (2006) Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans. Development 133: 1757–1766 doi:10.1242/dev.02357

25. WongM-C, SchwarzbauerJE (2012) Gonad morphogenesis and distal tip cell migration in the Caenorhabditis elegans hermaphrodite. Wiley Interdiscip Rev Dev Biol 1: 519–531 doi:10.1002/wdev.45

26. NishiwakiK (1999) Mutations affecting symmetrical migration of distal tip cells in Caenorhabditis elegans. Genetics 152: 985–997.

27. HarterinkM, KimDH, MiddelkoopTC, DoanTD, van OudenaardenA, et al. (2011) Neuroblast migration along the anteroposterior axis of C. elegans is controlled by opposing gradients of Wnts and a secreted Frizzled-related protein. Development 138: 2915–2924 doi:10.1242/dev.064733

28. MerzDC, AlvesG, KawanoT, ZhengH, CulottiJG (2003) UNC-52/Perlecan affects gonadal leader cell migrations in c. elegans hermaphrodites through alterations in growth factor signaling. Dev Biol 256: 174–187 doi:10.1016/S0012-1606(03)00014-9

29. CabelloJ, NeukommLJ, GünesdoganU, BurkartK, CharetteSJ, et al. (2010) The Wnt pathway controls cell death engulfment, spindle orientation, and migration through CED-10/Rac. PLoS Biol 8: e1000297 doi:10.1371/journal.pbio.1000297

30. InoueT, OzHS, WilandD, GharibS, DeshpandeR, et al. (2004) C. elegans LIN-18 is a Ryk ortholog and functions in parallel to LIN-17/Frizzled in Wnt signaling. Cell 118: 795–806 doi:10.1016/j.cell.2004.09.001

31. ZinovyevaAY, ForresterWC (2005) The C. elegans Frizzled CFZ-2 is required for cell migration and interacts with multiple Wnt signaling pathways. Dev Biol 285: 447–461 doi:10.1016/j.ydbio.2005.07.014

32. ZinovyevaAY, YamamotoY, SawaH, ForresterWC (2008) Complex network of Wnt signaling regulates neuronal migrations during Caenorhabditis elegans development. Genetics 179: 1357–1371 doi:10.1534/genetics.108.090290

33. WhangboJ, HarrisJ, KenyonC (2000) Multiple levels of regulation specify the polarity of an asymmetric cell division in C. elegans. Development 127: 4587–4598.

34. WadsworthWG, BhattH, HedgecockEM (1996) Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron 16: 35–46.

35. HamelinM, ZhouY, SuMW, ScottIM, CulottiJG (1993) Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steer their axons dorsally. Nature 364: 327–330 doi:10.1038/364327a0

36. SuM, MerzDC, KilleenMT, ZhouY, ZhengH, et al. (2000) Regulation of the UNC-5 netrin receptor initiates the first reorientation of migrating distal tip cells in Caenorhabditis elegans. Development 127: 585–594.

37. KulkarniG, XuZ, MohamedaM, LiH, TangX, et al. (2013) Experimental evidence for UNC-6 (netrin) axon guidance by stochastic fluctuations of intracellular UNC-40 (DCC) outgrowth activity. Biol Open 6 doi:10.1242/bio.20136346

38. ItohB, HiroseT, TakataN, NishiwakiK, KogaM, et al. (2005) SRC-1, a non-receptor type of protein tyrosine kinase, controls the direction of cell and growth cone migration in C. elegans. Development 132: 5161–5172 doi:10.1242/dev.02103

39. GumiennyT, BrugneraE (2001) CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107: 27–41.

40. LundquistEa, ReddienPW, HartwiegE, HorvitzHR, BargmannCI (2001) Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis. Development 128: 4475–4488.

41. BaumPD, GarrigaG (1997) Neuronal migrations and axon fasciculation are disrupted in ina-1 integrin mutants. Neuron 19: 51–62.

42. GreenJL, InoueT, SternbergPW (2008) Opposing Wnt pathways orient cell polarity during organogenesis. Cell 134: 646–656 doi:10.1016/j.cell.2008.06.026

43. LeeJ, MarstonDJ, WalstonT, HardinJ, HalberstadtA, et al. (2006) Wnt/Frizzled Signaling Controls C. elegans Gastrulation by Activating Actomyosin Contractility. Curr Biol 16: 1986–1997 doi:10.1016/j.cub.2006.08.090.Wnt/Frizzled

44. ZielJ, SherwoodD (2010) Roles for netrin signaling outside of axon guidance: a view from the worm. Dev Dyn 239: 1296–1305 doi:10.1002/dvdy.22225.Roles

45. CirulliV, YebraM (2007) Netrins: beyond the brain. Nat Rev Mol Cell Biol 8: 296–306 doi:10.1038/nrm2142

46. Colón-RamosDA, MargetaMA, ShenK (2007) Glia promote local synaptogenesis through UNC-6 (netrin) signaling in C. elegans. Science 318: 103–106 doi:10.1126/science.1143762

47. PoonVY, KlassenMP, ShenK (2008) UNC-6/netrin and its receptor UNC-5 locally exclude presynaptic components from dendrites. Nature 455: 669–673 doi:10.1038/nature07291

48. DalpeG, ZhengH, BrownL, CulottiJ (2012) Semaphorin-1 and Netrin Signal in Parallel and Permissively to Position the Male Ray 1 Sensillum in Caenorhabditis elegans. Genetics 192: 959–971 doi:10.1534/genetics.112.144253

49. ParkM, ShenK (2012) WNTs in synapse formation and neuronal circuitry. EMBO J 31: 2697–2704 doi:10.1038/emboj.2012.145

50. HerrP, HausmannG, BaslerK (2012) WNT secretion and signalling in human disease. Trends Mol Med 18: 483–493 doi:10.1016/j.molmed.2012.06.008

51. PolakisP (2012) Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4 doi:10.1101/cshperspect.a008052

52. AntebiA, CulottiJG, HedgecockEM (1998) daf-12 regulates developmental age and the dauer alternative in Caenorhabditis elegans. Development 125: 1191–1205.

53. AntebiA, YehW-H, TaitD, HedgecockEM, RiddleDL (2000) daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes & Dev 14: 1512–1527 doi:10.1101/gad.14.12.1512

54. BhatRa, StaufferB, KommBS, BodinePVN (2007) Structure-function analysis of secreted frizzled-related protein-1 for its Wnt antagonist function. J Cell Biochem 102: 1519–1528 doi:10.1002/jcb.21372

55. BrennerS (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.

56. TimmonsL, Firea (1998) Specific interference by ingested dsRNA. Nature 395: 854 doi:10.1038/27579

57. Ahringer J. (n.d.) Reverse genetics. doi:doi/10.1895/wormbook.1.7.1.

58. WuM, HermanMA (2007) Asymmetric localizations of LIN-17/Fz and MIG-5/Dsh are involved in the asymmetric B cell division in C. elegans. Dev Biol 303: 650–662.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#