-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Transport of Magnesium by a Bacterial Nramp-Related Gene
Magnesium ions are essential for life, and, correspondingly, all organisms must encode for proteins to transport them. Three classes of bacterial proteins (CorA, MgtE and MgtA/B) have previously been identified for transport of the ion. This current study introduces a new route of magnesium import, which, moreover, is unexpectedly provided by proteins distantly related to Natural resistance-associated macrophage proteins (Nramp). Nramp metal transporters are widespread in the three domains of life; however, most are assumed to function as transporters of transition metals such as manganese or iron. None of the previously characterized Nramps have been shown to transport magnesium. In this study, we demonstrate that certain bacterial proteins, distantly related to Nramp homologues, exhibit transport of magnesium. We also find that these new magnesium transporters are genetically controlled by a magnesium-sensing regulatory element. Importantly, we find numerous additional examples of similar genes sharing this regulatory arrangement, suggesting that these genes may be a frequent occurrence in bacteria, and may represent a class of magnesium transporters. Therefore, our aggregate data discover a new and perhaps broadly important path of magnesium import in bacteria.
Vyšlo v časopise: Transport of Magnesium by a Bacterial Nramp-Related Gene. PLoS Genet 10(6): e32767. doi:10.1371/journal.pgen.1004429
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004429Souhrn
Magnesium ions are essential for life, and, correspondingly, all organisms must encode for proteins to transport them. Three classes of bacterial proteins (CorA, MgtE and MgtA/B) have previously been identified for transport of the ion. This current study introduces a new route of magnesium import, which, moreover, is unexpectedly provided by proteins distantly related to Natural resistance-associated macrophage proteins (Nramp). Nramp metal transporters are widespread in the three domains of life; however, most are assumed to function as transporters of transition metals such as manganese or iron. None of the previously characterized Nramps have been shown to transport magnesium. In this study, we demonstrate that certain bacterial proteins, distantly related to Nramp homologues, exhibit transport of magnesium. We also find that these new magnesium transporters are genetically controlled by a magnesium-sensing regulatory element. Importantly, we find numerous additional examples of similar genes sharing this regulatory arrangement, suggesting that these genes may be a frequent occurrence in bacteria, and may represent a class of magnesium transporters. Therefore, our aggregate data discover a new and perhaps broadly important path of magnesium import in bacteria.
Zdroje
1. AndreiniC, BertiniI, CavallaroG, HollidayGL, ThorntonJM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13 : 1205–1218 doi:10.1007/s00775-008-0404-5
2. WaldronKJ, RutherfordJC, FordD, RobinsonNJ (2009) Metalloproteins and metal sensing. Nature 460 : 823–830 doi:10.1038/nature08300
3. GuerraAJ, GiedrocDP (2012) Metal site occupancy and allosteric switching in bacterial metal sensor proteins. Arch Biochem Biophys 519 : 210–222 doi:10.1016/j.abb.2011.11.021
4. MooreCM, HelmannJD (2005) Metal ion homeostasis in Bacillus subtilis. Curr Opin Microbiol 8 : 188–195 doi:10.1016/j.mib.2005.02.007
5. PennellaMA, GiedrocDP (2005) Structural determinants of metal selectivity in prokaryotic metal-responsive transcriptional regulators. Biometals 18 : 413–428 doi:10.1007/s10534-005-3716-8
6. GiedrocDP, ArunkumarAI (2007) Metal sensor proteins: nature's metalloregulated allosteric switches. Dalton Trans 63 : 3107–3120 doi:10.1039/b706769k
7. SkameneE, GrosP, ForgetA, KongshavnPAL, St CharlesC, et al. (1982) Genetic regulation of resistance to intracellular pathogens. Nature 297 : 506–509 doi:10.1038/297506a0
8. HuJ, BumsteadN, BarrowP, SebastianiG, OlienL, et al. (1997) Resistance to salmonellosis in the chicken is linked to NRAMP1 and TNC. Genome Res 7 : 693–704 doi:10.1101/gr.7.7.693
9. LangT, PrinaE, SibthorpeD, BlackwellJM (1997) Nramp1 transfection transfers Ity/Lsh/Bcg-related pleiotropic effects on macrophage activation: influence on antigen processing and presentation. Infect Immun 65 : 380–386.
10. PinnerE, GruenheidS, RaymondM, GrosP (1997) Functional complementation of the yeast divalent cation transporter family SMF by NRAMP2, a member of the mammalian natural resistance-associated macrophage protein family. J Biol Chem 272 : 28933–28938 doi:10.1074/jbc.272.46.28933
11. SupekF, SupekovaL, NelsonH, NelsonN (1997) Function of metal-ion homeostasis in the cell division cycle, mitochondrial protein processing, sensitivity to mycobacterial infection and brain function. J Exp Biol 200 : 321–330.
12. ZwillingBS, KuhnDE, WikoffL, BrownD, LafuseW (1999) Role of iron in Nramp1-mediated inhibition of mycobacterial growth. Infect Immun 67 : 1386–1392.
13. GomesMS, AppelbergR (1998) Evidence for a link between iron metabolism and Nramp1 gene function in innate resistance against Mycobacterium avium. Immunology 95 : 165–168.
14. BoechatN, BordatY, RauzierJ, HanceAJ, GicquelB, et al. (2002) Disruption of the Gene Homologous to Mammalian Nramp1 in Mycobacterium tuberculosis Does Not Affect Virulence in Mice. 70 : 4124–4131 doi:10.1128/IAI.70.8.4124
15. DomenechP, PymAS, CellierM, BarryCE, ColeST (2002) Inactivation of the Mycobacterium tuberculosis Nramp orthologue (mntH) does not affect virulence in a mouse model of tuberculosis. FEMS Microbiol Lett 207 : 81–86.
16. GovoniG, GrosP (1998) Macrophage NRAMP1 and its role in resistance to microbial infections. Inflamm Res 47 : 277–284 doi:10.1007/s000110050330
17. NelsonN (1999) Metal ion transporters and homeostasis. EMBO J 18 : 4361–4371.
18. ForbesJR, GrosP (2003) Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane. Blood 102 : 1884–1892 doi:10.1182/blood-2003-02-0425
19. ForbesJR, GrosP (2001) Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol 9 : 397–403 doi:10.1016/S0966-842X(01)02098-4
20. KehresDG, ZaharikML, FinlayBB, MaguireME (2000) The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Mol Microbiol 36 : 1085–1100 doi:[]mmi1922 [pii]
21. GunshinH, MackenzieB, Berger UV, GunshinY, RomeroMF, et al. (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388 : 482–488 doi:10.1038/41343
22. MakuiH, RoigE, ColeST, HelmannJD, GrosP, et al. (2000) Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol Microbiol 35 : 1065–1078.
23. RomaniAM, ScarpaA (2000) Regulation of cellular magnesium. Front Biosci 5: D720–D734 doi:10.2741/Romani
24. MoomawAS, MaguireME (2008) The unique nature of mg2+ channels. Physiol Bethesda Md 23 : 275–285.
25. ReinhartRA (1988) Magnesium metabolism. A review with special reference to the relationship between intracellular content and serum levels. Arch Intern Med 148 : 2415–2420 doi:10.1001/archinte.1988.00380110065013
26. ChenK, YuldashevaS, Penner-HahnJE, O'HalloranTV (2003) An atypical linear Cu(I)-S2 center constitutes the high-affinity metal-sensing site in the CueR metalloregulatory protein. J Am Chem Soc 125 : 12088–12089 doi:10.1021/ja036070y
27. ChiversPT, SauerRT (2000) Regulation of high affinity nickel uptake in bacteria. Ni2+-Dependent interaction of NikR with wild-type and mutant operator sites. J Biol Chem 275 : 19735–19741 doi:10.1074/jbc.M002232200
28. ShinJ-H, JungHJ, AnYJ, ChoY-B, ChaS-S, et al. (2011) Graded expression of zinc-responsive genes through two regulatory zinc-binding sites in Zur. Proc Natl Acad Sci U S A 108 : 5045–5050.
29. GrubbsRD, MaguireME (1987) Magnesium as a regulatory cation: criteria and evaluation. Magnesium 6 : 113–127.
30. WilliamsRJ (1970) Cation distributions and the energy status of cells. J Bioenerg 1 : 215–225.
31. FlatmanPW (1991) Mechanisms of magnesium transport. Annu Rev Physiol 53 : 259–271 doi:10.1146/annurev.ph.53.030191.001355
32. FroschauerEM, KolisekM, DieterichF, SchweigelM, SchweyenRJ (2004) Fluorescence measurements of free [Mg2+] by use of mag-fura 2 in Salmonella enterica. FEMS Microbiol Lett 237 : 49–55.
33. MaguireME (2006) The structure of CorA: a Mg(2+)-selective channel. Curr Opin Struct Biol 16 : 432–438 doi:10.1016/j.sbi.2006.06.006
34. GardnerRC (2003) Genes for magnesium transport. Curr Opin Plant Biol 6 : 263–267 doi:10.1016/S1369-5266(03)00032-3
35. HmielSP, SnavelyMD, FlorerJB, MaguireME, MillerCG (1989) Magnesium transport in Salmonella typhimurium: genetic characterization and cloning of three magnesium transport loci. J Bacteriol 171 : 4742–4751.
36. KehresDG, MaguireME (2002) Structure, properties and regulation of magnesium transport proteins. Biometals 15 : 261–270.
37. SmithRL, MaguireME (1995) Distribution of the CorA Mg2+ transport system in gram-negative bacteria. J Bacteriol 177 : 1638–1640.
38. SmithRL, MaguireME (1998) Microbial magnesium transport: unusual transporters searching for identity. Mol Microbiol 28 : 217–226.
39. PerezJC, ShinD, ZwirI, LatifiT, HadleyTJ, et al. (2009) Evolution of a bacterial regulon controlling virulence and Mg(2+) homeostasis. PLoS Genet 5: e1000428.
40. CromieMJ, ShiY, LatifiT, GroismanEA (2006) An RNA sensor for intracellular Mg(2+). Cell 125 : 71–84 doi:10.1016/j.cell.2006.01.043
41. DannCE, WakemanCA, SielingCL, BakerSC, IrnovI, et al. (2007) Structure and mechanism of a metal-sensing regulatory RNA. Cell 130 : 878–892 doi:10.1016/j.cell.2007.06.051
42. RameshA, WinklerWC (2010) Magnesium-sensing riboswitches in bacteria. RNA Biol 7 : 77–83 doi:10.4161/rna.7.1.10490
43. WakemanCA, WinklerWC, DannCE (2007) Structural features of metabolite-sensing riboswitches. Trends Biochem Sci 32 : 415–424.
44. NudlerE, MironovA, NudlerE, MironovAS (2004) The riboswitch control of bacterial metabolism. Trends Biochem Sci 29 : 11–17 doi:10.1016/j.tibs.2003.11.004
45. SchwalbeH, BuckJ, FürtigB, NoeskeJ, WöhnertJ (2007) Structures of RNA switches: insight into molecular recognition and tertiary structure. Angew Chem Int Ed Engl 46 : 1212–1219 doi:10.1002/anie.200604163
46. MontangeRK, BateyRT (2008) Riboswitches: emerging themes in RNA structure and function. Annu Rev Biophys 37 : 117–133 doi:10.1146/annurev.biophys.37.032807.130000
47. DambachMD, WinklerWC (2009) Expanding roles for metabolite-sensing regulatory RNAs. Curr Opin Microbiol 12 : 161–169.
48. RothA, BreakerRR (2009) The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 78 : 305–334 doi:10.1146/annurev.biochem.78.070507.135656
49. RameshA, WakemanCA, WinklerWC (2011) Insights into metalloregulation by M-box riboswitch RNAs via structural analysis of manganese-bound complexes. J Mol Biol 407 : 556–570.
50. WakemanCA, RameshA, WinklerWC (2009) Multiple metal-binding cores are required for metalloregulation by M-box riboswitch RNAs. J Mol Biol 392 : 723–735.
51. BarrickJE (2009) Predicting riboswitch regulation on a genomic scale. Methods Mol Biol 540 : 1–13 doi:_10.1007/978-1-59745-558-9_1
52. JakubovicsNS, JenkinsonHF (2001) Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria. Microbiology 147 : 1709–1718.
53. QueQ, HelmannJD (2000) Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol Microbiol 35 : 1454–1468.
54. KehresDG, JanakiramanA, SlauchJM, MaguireME (2002) Regulation of Salmonella enterica serovar Typhimurium mntH transcription by H(2)O(2), Fe(2+), and Mn(2+). J Bacteriol 184 : 3151–3158.
55. RicherE, CourvilleP, BergevinI, CellierMFM (2003) Horizontal gene transfer of “prototype” Nramp in bacteria. J Mol Evol 57 : 363–376 doi:10.1007/s00239-003-2472-z
56. HohleTH, O'BrianMR (2009) The mntH gene encodes the major Mn(2+) transporter in Bradyrhizobium japonicum and is regulated by manganese via the Fur protein. Mol Microbiol 72 : 399–409.
57. WakemanCA, GoodsonJR, ZachariaVM, WinklerWC (2014) An Assessment of the Requirements for Magnesium Transporters in Bacillus subtilis. J Bacteriol 196(6): 1206–14 doi:10.1128/JB.01238-13
58. CellierMF, BergevinI, BoyerE, RicherE (2001) Polyphyletic origins of bacterial Nramp transporters. Trends Genet 17 : 365–370 doi:10.1016/S0168-9525(01)02364-2
59. ChaloupkaR, CourvilleP, VeyrierF, KnudsenB, Tompkins Ta, et al. (2005) Identification of functional amino acids in the Nramp family by a combination of evolutionary analysis and biophysical studies of metal and proton cotransport in vivo. Biochemistry 44 : 726–733 doi:10.1021/bi048014v
60. Cellier M, Gros P (2004) The Nramp Family. Georgetown: Eurekah.com.
61. CourvilleP, UrbankovaE, RensingC, ChaloupkaR, QuickM, et al. (2008) Solute carrier 11 cation symport requires distinct residues in transmembrane helices 1 and 6. J Biol Chem 283 : 9651–9658 doi:10.1074/jbc.M709906200
62. CellierMFM (2012) Nutritional immunity: homology modeling of Nramp metal import. Adv Exp Med Biol 946 : 335–351 doi:_10.1007/978-1-4614-0106-3_19
63. TownsendDE, EsenwineAJ, GeorgeJ, BrossD, MaguireME, et al. (1995) Cloning of the mgtE Mg2+ transporter from Providencia stuartii and the distribution of mgtE in gram-negative and gram-positive bacteria. J Bacteriol 177 : 5350–5354.
64. SmithRL, BanksJL, SnavelyMD, MaguireME (1993) Sequence and topology of the CorA magnesium transport systems of Salmonella typhimurium and Escherichia coli. Identification of a new class of transport protein. J Biol Chem 268 : 14071–14080.
65. TaoT, SnavelyMD, FarrSG, MaguireME (1995) Magnesium transport in Salmonella typhimurium: mgtA encodes a P-type ATPase and is regulated by Mg2+ in a manner similar to that of the mgtB P-type ATPase. J Bacteriol 177 : 2654–2662.
66. AgranoffD, MonahanIM, ManganJA, ButcherPD, KrishnaS (1999) Mycobacterium tuberculosis expresses a novel pH-dependent divalent cation transporter belonging to the Nramp family. J Exp Med 190 : 717–724.
67. CzachorowskiM, Lam-Yuk-TseungS, CellierM, GrosP (2009) Transmembrane topology of the mammalian Slc11a2 iron transporter. Biochemistry 48 : 8422–8434 doi:10.1021/bi900606y
68. AnagnostopoulosC, SpizizenJ (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81 : 741–746.
69. Van OoijC, LosickR (2003) Subcellular localization of a small sporulation protein in Bacillus subtilis. J Bacteriol 185 : 1391–1398.
70. ArnaudM, ChastanetA, DébarbouilléM (2004) New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl Environ Microbiol 70 : 6887–6891 doi:10.1128/AEM.70.11.6887-6891.2004
71. ZhangH, DavisonW, MillerS, TychW (1995) In situ high resolution measurements of fluxes of Ni, Cu, Fe, and Mn and concentrations of Zn and Cd in porewaters by DGT. Geochim Cosmochim Acta 59 : 4181–4192 doi:10.1016/0016-7037(95)00293-9
72. TobinMB, PeeryRB, SkatrudPL (1997) Genes encoding multiple drug resistance-like proteins in Aspergillus fumigatus and Aspergillus flavus. Gene 200 : 11–23 doi:10.1016/S0378-1119(97)00281-3
73. DeikusG, BabitzkeP, BechhoferDH (2004) Recycling of a regulatory protein by degradation of the RNA to which it binds. Proc Natl Acad Sci U S A 101 : 2747–2751.
74. RoosJW, McLaughlinJK, PapoutsakisET (1985) The effect of pH on nitrogen supply, cell lysis, and solvent production in fermentations of Clostridium acetobutylicum. Biotechnol Bioeng 27 : 681–694 doi:10.1002/bit.260270518
75. KatohK, StandleyDM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30 : 772–780 doi:10.1093/molbev/mst010
76. RonquistF, HuelsenbeckJP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19 : 1572–1574 doi:10.1093/bioinformatics/btg180
77. AltekarG, DwarkadasS, HuelsenbeckJP, RonquistF (2004) Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20 : 407–415 doi:10.1093/bioinformatics/btg427
78. HelaersR, MilinkovitchMC (2010) MetaPIGA v2.0: maximum likelihood large phylogeny estimation using the metapopulation genetic algorithm and other stochastic heuristics. BMC Bioinformatics 11 : 379 doi:10.1186/1471-2105-11-379
79. TamuraK, StecherG, PetersonD, FilipskiA, KumarS (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30 : 2725–2729 doi:10.1093/molbev/mst197
Štítky
Genetika Reprodukčná medicína
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2014 Číslo 6- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- Inflammation: Gone with Translation
- Recombination Accelerates Adaptation on a Large-Scale Empirical Fitness Landscape in HIV-1
- Caspase Inhibition in Select Olfactory Neurons Restores Innate Attraction Behavior in Aged
- Accurate, Model-Based Tuning of Synthetic Gene Expression Using Introns in
- A Novel Peptidoglycan Binding Protein Crucial for PBP1A-Mediated Cell Wall Biogenesis in
- Ancient DNA Analysis of 8000 B.C. Near Eastern Farmers Supports an Early Neolithic Pioneer Maritime Colonization of Mainland Europe through Cyprus and the Aegean Islands
- The Epidermal Growth Factor Receptor Critically Regulates Endometrial Function during Early Pregnancy
- Introgression from Domestic Goat Generated Variation at the Major Histocompatibility Complex of Alpine Ibex
- Netrins and Wnts Function Redundantly to Regulate Antero-Posterior and Dorso-Ventral Guidance in
- Coordination of Wing and Whole-Body Development at Developmental Milestones Ensures Robustness against Environmental and Physiological Perturbations
- Phenotypic Dissection of Bone Mineral Density Reveals Skeletal Site Specificity and Facilitates the Identification of Novel Loci in the Genetic Regulation of Bone Mass Attainment
- Deep Evolutionary Comparison of Gene Expression Identifies Parallel Recruitment of -Factors in Two Independent Origins of C Photosynthesis
- Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity
- Translational Regulation of Specific mRNAs Controls Feedback Inhibition and Survival during Macrophage Activation
- Rosa26-GFP Direct Repeat (RaDR-GFP) Mice Reveal Tissue- and Age-Dependence of Homologous Recombination in Mammals
- Abnormal Type I Collagen Post-translational Modification and Crosslinking in a Cyclophilin B KO Mouse Model of Recessive Osteogenesis Imperfecta
- : Clonal Reinforcement Drives Evolution of a Simple Microbial Community
- Reviving the Dead: History and Reactivation of an Extinct L1
- Defective iA37 Modification of Mitochondrial and Cytosolic tRNAs Results from Pathogenic Mutations in TRIT1 and Its Substrate tRNA
- Early Back-to-Africa Migration into the Horn of Africa
- Aberrant Autolysosomal Regulation Is Linked to The Induction of Embryonic Senescence: Differential Roles of Beclin 1 and p53 in Vertebrate Spns1 Deficiency
- Microbial Succession in the Gut: Directional Trends of Taxonomic and Functional Change in a Birth Cohort of Spanish Infants
- Integrated Pathway-Based Approach Identifies Association between Genomic Regions at CTCF and CACNB2 and Schizophrenia
- Genetic Determinants of Long-Term Changes in Blood Lipid Concentrations: 10-Year Follow-Up of the GLACIER Study
- Palaeosymbiosis Revealed by Genomic Fossils of in a Strongyloidean Nematode
- Early Embryogenesis-Specific Expression of the Rice Transposon Enhances Amplification of the MITE
- PINK1-Mediated Phosphorylation of Parkin Boosts Parkin Activity in
- OsHUS1 Facilitates Accurate Meiotic Recombination in Rice
- Genetic Background Drives Transcriptional Variation in Human Induced Pluripotent Stem Cells
- Pervasive Divergence of Transcriptional Gene Regulation in Caenorhabditis Nematodes
- N-WASP Is Required for Structural Integrity of the Blood-Testis Barrier
- The Transcription Factor TFII-I Promotes DNA Translesion Synthesis and Genomic Stability
- An Operon of Three Transcriptional Regulators Controls Horizontal Gene Transfer of the Integrative and Conjugative Element ICE in B13
- Digital Genotyping of Macrosatellites and Multicopy Genes Reveals Novel Biological Functions Associated with Copy Number Variation of Large Tandem Repeats
- ATRA-Induced Cellular Differentiation and CD38 Expression Inhibits Acquisition of BCR-ABL Mutations for CML Acquired Resistance
- The EJC Binding and Dissociating Activity of PYM Is Regulated in
- JNK Controls the Onset of Mitosis in Planarian Stem Cells and Triggers Apoptotic Cell Death Required for Regeneration and Remodeling
- Mouse Y-Linked and Are Expressed during the Male-Specific Interphase between Meiosis I and Meiosis II and Promote the 2 Meiotic Division
- Rasa3 Controls Megakaryocyte Rap1 Activation, Integrin Signaling and Differentiation into Proplatelet
- Transcriptional Control of Steroid Biosynthesis Genes in the Prothoracic Gland by Ventral Veins Lacking and Knirps
- Souffle/Spastizin Controls Secretory Vesicle Maturation during Zebrafish Oogenesis
- The POU Factor Ventral Veins Lacking/Drifter Directs the Timing of Metamorphosis through Ecdysteroid and Juvenile Hormone Signaling
- The First Endogenous Herpesvirus, Identified in the Tarsier Genome, and Novel Sequences from Primate Rhadinoviruses and Lymphocryptoviruses
- Sequence of a Complete Chicken BG Haplotype Shows Dynamic Expansion and Contraction of Two Gene Lineages with Particular Expression Patterns
- Background Selection as Baseline for Nucleotide Variation across the Genome
- CPF-Associated Phosphatase Activity Opposes Condensin-Mediated Chromosome Condensation
- The Effects of Codon Context on Translation Speed
- Glycogen Synthase Kinase (GSK) 3β Phosphorylates and Protects Nuclear Myosin 1c from Proteasome-Mediated Degradation to Activate rDNA Transcription in Early G1 Cells
- Regulation of Gene Expression in Autoimmune Disease Loci and the Genetic Basis of Proliferation in CD4 Effector Memory T Cells
- Muscle Structure Influences Utrophin Expression in Mice
- BLMP-1/Blimp-1 Regulates the Spatiotemporal Cell Migration Pattern in
- Identification of Late Larval Stage Developmental Checkpoints in Regulated by Insulin/IGF and Steroid Hormone Signaling Pathways
- Transport of Magnesium by a Bacterial Nramp-Related Gene
- Sgo1 Regulates Both Condensin and Ipl1/Aurora B to Promote Chromosome Biorientation
- The HY5-PIF Regulatory Module Coordinates Light and Temperature Control of Photosynthetic Gene Transcription
- The Rim15-Endosulfine-PP2A Signalling Module Regulates Entry into Gametogenesis and Quiescence Distinct Mechanisms in Budding Yeast
- Regulation of Hfq by the RNA CrcZ in Carbon Catabolite Repression
- Loss of a Neural AMP-Activated Kinase Mimics the Effects of Elevated Serotonin on Fat, Movement, and Hormonal Secretions
- Positive Feedback of Expression Ensures Irreversible Meiotic Commitment in Budding Yeast
- Hecate/Grip2a Acts to Reorganize the Cytoskeleton in the Symmetry-Breaking Event of Embryonic Axis Induction
- Regulatory Mechanisms That Prevent Re-initiation of DNA Replication Can Be Locally Modulated at Origins by Nearby Sequence Elements
- Speciation and Introgression between and
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Early Back-to-Africa Migration into the Horn of Africa
- PINK1-Mediated Phosphorylation of Parkin Boosts Parkin Activity in
- OsHUS1 Facilitates Accurate Meiotic Recombination in Rice
- An Operon of Three Transcriptional Regulators Controls Horizontal Gene Transfer of the Integrative and Conjugative Element ICE in B13
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy