-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Deep Evolutionary Comparison of Gene Expression Identifies Parallel Recruitment of -Factors in Two Independent Origins of C Photosynthesis
C4 photosynthesis is one of the most successful and widespread examples of convergent evolution; the first C4 plant evolved long after the extinction of the dinosaurs, yet C4 species now account for ∼30% of primary productivity on earth. Compared with ancestral C3 photosynthesis, the C4 pathway allows faster rates of growth, and thus international efforts have been mustered to introduce advantageous C4 traits into important C3 crops to increase their yield. However, the transition from C3 to C4 involves complex alterations to leaf anatomy and biochemistry. Despite these multiple changes, C4 photosynthesis has evolved independently at least 60 times. Through DNA and RNA sequencing we are beginning define a catalog of genes associated with C3 or C4 photosynthesis. However, we know little about how these genes act co-ordinately to bring about the convergent C4 phenotype. In this work we develop a new informatics framework to reveal that two independent lineages of C4 plants have co-opted the same regulators of gene expression to generate the C4 leaf. Our findings provide a new paradigm for investigating the genetics of convergent traits and the origin of convergent phenotypes. Moreover, they reveal significant new insight into the regulatory mechanisms governing the origins of C4 photosynthesis.
Vyšlo v časopise: Deep Evolutionary Comparison of Gene Expression Identifies Parallel Recruitment of -Factors in Two Independent Origins of C Photosynthesis. PLoS Genet 10(6): e32767. doi:10.1371/journal.pgen.1004365
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004365Souhrn
C4 photosynthesis is one of the most successful and widespread examples of convergent evolution; the first C4 plant evolved long after the extinction of the dinosaurs, yet C4 species now account for ∼30% of primary productivity on earth. Compared with ancestral C3 photosynthesis, the C4 pathway allows faster rates of growth, and thus international efforts have been mustered to introduce advantageous C4 traits into important C3 crops to increase their yield. However, the transition from C3 to C4 involves complex alterations to leaf anatomy and biochemistry. Despite these multiple changes, C4 photosynthesis has evolved independently at least 60 times. Through DNA and RNA sequencing we are beginning define a catalog of genes associated with C3 or C4 photosynthesis. However, we know little about how these genes act co-ordinately to bring about the convergent C4 phenotype. In this work we develop a new informatics framework to reveal that two independent lineages of C4 plants have co-opted the same regulators of gene expression to generate the C4 leaf. Our findings provide a new paradigm for investigating the genetics of convergent traits and the origin of convergent phenotypes. Moreover, they reveal significant new insight into the regulatory mechanisms governing the origins of C4 photosynthesis.
Zdroje
1. ChristinPA, OsborneCP, SageRF, ArakakiM, EdwardsEJ (2011) C4 eudicots are not younger than C4 monocots. J Exp Bot 62 : 3171–3181.
2. SageRF, ChristinPA, EdwardsEJ (2011) The C4 plant lineages of planet Earth. J Exp Bot 62 : 3155–3169.
3. Brown HA (1999) Agronomic implications of C4 photosynthesis. In C4 Plant Biology. In: (Sage RFaM, R.K.,eds). San Diego, CA: Academic Press, editor. pp. 473–508.
4. HatchMD (1987) C4 photosynthesis: a unique elend of modified biochemistry, anatomy and ultrastructure. Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics 895 : 81–106.
5. HibberdJM, CovshoffS (2010) The Regulation of Gene Expression Required for C4 Photosynthesis. Annu Rev Plant Biol 61 : 181–207.
6. VoznesenskayaEV, FranceschiVR, KiiratsO, FreitagH, EdwardsGE (2001) Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414 : 543–546.
7. VoznesenskayaEV, FranceschiVR, KiiratsO, ArtyushevaEG, FreitagH, et al. (2002) Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant J 31 : 649–662.
8. FurbankRT, HatchMD (1987) Mechanism of C4 photosynthesis: the size and composition of the inorganic carbon pool in bundle sheath cells. Plant Physiol 85 : 958–964.
9. BrautigamA, KajalaK, WullenweberJ, SommerM, GagneulD, et al. (2011) An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species. Plant Physiol 155 : 142–156.
10. SawersR, LiuP, AnufrikovaK, HwangJTG, BrutnellT (2007) A multi-treatment experimental system to examine photosynthetic differentiation in the maize leaf. BMC Genomics 8 : 12.
11. PickTR, BrautigamA, SchluterU, DentonAK, ColmseeC, et al. (2011) Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation. Plant Cell 23 : 4208–4220.
12. LiP, PonnalaL, GandotraN, WangL, SiY, et al. (2010) The developmental dynamics of the maize leaf transcriptome. Nat Genet 42 : 1060–1067.
13. WangP, KellyS, FouracreJP, LangdaleJA (2013) Genome-wide transcript analysis of early maize leaf development reveals gene cohorts associated with the differentiation of C4 Kranz anatomy. Plant J 75 : 656–670.
14. MatsuokaM, KyozukaJ, ShimamotoK, Kano-MurakamiY (1994) The promoters of two carboxylases in a C4 plant (maize) direct cell-specific, light-regulated expression in a C3 plant (rice). Plant J 6 : 311–319.
15. NomuraM, SentokuN, NishimuraA, LinJH, HondaC, et al. (2000) The evolution of C4 plants: acquisition of cis-regulatory sequences in the promoter of C4-type pyruvate, orthophosphate dikinase gene. Plant J 22 : 211–221.
16. GowikU, BurscheidtJ, AkyildizM, SchlueU, KoczorM, et al. (2004) cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell 16 : 1077–1090.
17. AkyildizM, GowikU, EngelmannS, KoczorM, StreubelM, et al. (2007) Evolution and Function of a cis-Regulatory Module for Mesophyll-Specific Gene Expression in the C4 Dicot Flaveria trinervia. Plant Cell 19 : 3391–3402.
18. BrownNJ, NewellCA, StanleyS, ChenJE, PerrinAJ, et al. (2011) Independent and parallel recruitment of preexisting mechanisms underlying C4 photosynthesis. Science 331 : 1436–1439.
19. KajalaK, BrownNJ, WilliamsBP, BorrillP, TaylorLE, et al. (2012) Multiple Arabidopsis genes primed for recruitment into C4 photosynthesis. Plant J 69 : 47–56.
20. RossiniL, CribbL, MartinDJ, LangdaleJA (2001) The maize golden2 gene defines a novel class of transcriptional regulators in plants. Plant Cell 13 : 1231–1244.
21. WatersMT, WangP, KorkaricM, CapperRG, SaundersNJ, et al. (2009) GLK Transcription Factors Coordinate Expression of the Photosynthetic Apparatus in Arabidopsis. Plant Cell 21 : 1109–1128.
22. NelsonT, DenglerN (1997) Leaf Vascular Pattern Formation. Plant Cell 9 : 1121–1135.
23. AndriankajaM, DhondtS, De BodtS, VanhaerenH, CoppensF, et al. (2012) Exit from proliferation during leaf development in Arabidopsis thaliana: a not-so-gradual process. Dev Cell 22 : 64–78.
24. KoteyevaNK, VoznesenskayaEV, CousinsAB, EdwardsGE (2014) Differentiation of C4 photosynthesis along a leaf developmental gradient in two Cleome species having different forms of Kranz anatomy. J Exp Bot doi:10.1093/jxb/eru042
25. SageRF, ZhuXG (2011) Exploiting the engine of C4 photosynthesis. J Exp Bot 62 : 2989–3000.
26. MartinJA, WangZ (2011) Next-generation transcriptome assembly. Nat Rev Genet 12 : 671–682.
27. SchulzMH, ZerbinoDR, VingronM, BirneyE (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28 : 1086–1092.
28. RobertsonG, ScheinJ, ChiuR, CorbettR, FieldM, et al. (2010) De novo assembly and analysis of RNA-seq data. Nat Methods 7 : 909–912.
29. WangJL, TurgeonR, CarrJP, BerryJO (1993) Carbon Sink-to-Source Transition Is Coordinated with Establishment of Cell-Specific Gene Expression in a C4 Plant. Plant Cell 5 : 289–296.
30. ScarpellaE, BarkoulasM, TsiantisM (2010) Control of leaf and vein development by auxin. Cold Spring Harb Perspect Biol 2: a001511.
31. NathU, CrawfordBC, CarpenterR, CoenE (2003) Genetic control of surface curvature. Science 299 : 1404–1407.
32. MarshallDM, MuhaidatR, BrownNJ, LiuZ, StanleyS, et al. (2007) Cleome, a genus closely related to Arabidopsis, contains species spanning a developmental progression from C3 to C4 photosynthesis. Plant J 51 : 886–896.
33. VoznesenskayaEV, KoteyevaNK, ChuongSD, IvanovaAN, BarrocaJ, et al. (2007) Physiological, anatomical and biochemical characterisation of photosynthetic types in genus Cleome (Cleomaceae). J Functional Plant Biology 34 : 247–267.
34. SommerM, BrautigamA, WeberAP (2012) The dicotyledonous NAD malic enzyme C4 plant Cleome gynandra displays age-dependent plasticity of C4 decarboxylation biochemistry. Plant Biol 14 : 621–629.
35. ChangYM, LiuWY, ShihAC, ShenMN, LuCH, et al. (2012) Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. Plant Physiol 160 : 165–177.
36. JiaoY, TaustaSL, GandotraN, SunN, LiuT, et al. (2009) A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat Genet 41 : 258–263.
37. ChawSM, ChangCC, ChenHL, LiWH (2004) Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes. J Mol Evol 58 : 424–441.
38. McKownAD, DenglerNG (2009) Shifts in leaf vein density through accelerated vein formation in C4 Flaveria (Asteraceae). Ann Bot 104 : 1085–1098.
39. DenglerNG, DenglerRE, DonnellyPM, FilosaMF (1995) Expression of the C4 Pattern of Photosynthetic Enzyme Accumulation During Leaf Development in Atriplex rosea (Chenopodiaceae). Am J Bot 82 : 318–327.
40. BowmanSM, PatelM, YerramsettyP, MureCM, ZielinskiAM, et al. (2013) A novel RNA binding protein affects rbcL gene expression and is specific to bundle sheath chloroplasts in C4 plants. BMC Plant Biol 13 : 138.
41. BrownNJ, PalmerBG, StanleyS, HajajiH, JanacekSH, et al. (2010) C4 acid decarboxylases required for C4 photosynthesis are active in the mid-vein of the C species Arabidopsis thaliana, and are important in sugar and amino acid metabolism. Plant J 61 : 122–133.
42. ChristinPA, EdwardsEJ, BesnardG, BoxallSF, GregoryR, et al. (2012) Adaptive evolution of C(4) photosynthesis through recurrent lateral gene transfer. Curr Biol 22 : 445–449.
43. WangP, FouracreJ, KellyS, KarkiS, GowikU, et al. (2013) Evolution of GOLDEN2-LIKE gene function in C3 and C4 plants. Planta 237 : 481–495.
44. HibberdJM, SheehyJE, LangdaleJA (2008) Using C4 photosynthesis to increase the yield of rice–rationale and feasibility. Current Opinion in Plant Biology 11 : 228–231.
45. MarshallDM, RiyadhM, NaomiJB, ZhengL, SusanS, et al. (2007) Cleome, a genus closely related to Arabidopsis, contains species spanning a developmental progression from C3 to C4 photosynthesis. Plant Journal 51 : 886–896.
46. DhondtS, Van HaerenborghD, Van CauwenberghC, MerksRM, PhilipsW, et al. (2012) Quantitative analysis of venation patterns of Arabidopsis leaves by supervised image analysis. Plant J 69 : 553–563.
47. GoecksJ, NekrutenkoA, TaylorJ (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11: R86.
48. MaccallumI, PrzybylskiD, GnerreS, BurtonJ, ShlyakhterI, et al. (2009) ALLPATHS 2: small genomes assembled accurately and with high continuity from short paired reads. Genome Biol 10: R103.
49. ZerbinoDR, BirneyE (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18 : 821–829.
50. EdgarRC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26 : 2460–2461.
51. LiB, DeweyCN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12 : 323.
52. AndersS, HuberW (2010) Differential expression analysis for sequence count data. Genome Biol 11: R106.
53. BenjaminiY, HochbergY (1995) Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological) 57 : 289–300.
54. YoungMD, WakefieldMJ, SmythGK, OshlackA (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11: R14.
55. UsadelB, NagelA, SteinhauserD, GibonY, BlasingO, et al. (2006) PageMan: An interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments. BMC Bioinformatics 7 : 535.
56. ChangYM, ChangCL, LiWH, ShihAC (2013) Historical profiling of maize duplicate genes sheds light on the evolution of C4 photosynthesis in grasses. Mol Phylogenet Evol 66 : 453–462.
Štítky
Genetika Reprodukčná medicína
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2014 Číslo 6- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- Inflammation: Gone with Translation
- Recombination Accelerates Adaptation on a Large-Scale Empirical Fitness Landscape in HIV-1
- Caspase Inhibition in Select Olfactory Neurons Restores Innate Attraction Behavior in Aged
- Accurate, Model-Based Tuning of Synthetic Gene Expression Using Introns in
- A Novel Peptidoglycan Binding Protein Crucial for PBP1A-Mediated Cell Wall Biogenesis in
- Ancient DNA Analysis of 8000 B.C. Near Eastern Farmers Supports an Early Neolithic Pioneer Maritime Colonization of Mainland Europe through Cyprus and the Aegean Islands
- The Epidermal Growth Factor Receptor Critically Regulates Endometrial Function during Early Pregnancy
- Introgression from Domestic Goat Generated Variation at the Major Histocompatibility Complex of Alpine Ibex
- Netrins and Wnts Function Redundantly to Regulate Antero-Posterior and Dorso-Ventral Guidance in
- Coordination of Wing and Whole-Body Development at Developmental Milestones Ensures Robustness against Environmental and Physiological Perturbations
- Phenotypic Dissection of Bone Mineral Density Reveals Skeletal Site Specificity and Facilitates the Identification of Novel Loci in the Genetic Regulation of Bone Mass Attainment
- Deep Evolutionary Comparison of Gene Expression Identifies Parallel Recruitment of -Factors in Two Independent Origins of C Photosynthesis
- Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity
- Translational Regulation of Specific mRNAs Controls Feedback Inhibition and Survival during Macrophage Activation
- Rosa26-GFP Direct Repeat (RaDR-GFP) Mice Reveal Tissue- and Age-Dependence of Homologous Recombination in Mammals
- Abnormal Type I Collagen Post-translational Modification and Crosslinking in a Cyclophilin B KO Mouse Model of Recessive Osteogenesis Imperfecta
- : Clonal Reinforcement Drives Evolution of a Simple Microbial Community
- Reviving the Dead: History and Reactivation of an Extinct L1
- Defective iA37 Modification of Mitochondrial and Cytosolic tRNAs Results from Pathogenic Mutations in TRIT1 and Its Substrate tRNA
- Early Back-to-Africa Migration into the Horn of Africa
- Aberrant Autolysosomal Regulation Is Linked to The Induction of Embryonic Senescence: Differential Roles of Beclin 1 and p53 in Vertebrate Spns1 Deficiency
- Microbial Succession in the Gut: Directional Trends of Taxonomic and Functional Change in a Birth Cohort of Spanish Infants
- Integrated Pathway-Based Approach Identifies Association between Genomic Regions at CTCF and CACNB2 and Schizophrenia
- Genetic Determinants of Long-Term Changes in Blood Lipid Concentrations: 10-Year Follow-Up of the GLACIER Study
- Palaeosymbiosis Revealed by Genomic Fossils of in a Strongyloidean Nematode
- Early Embryogenesis-Specific Expression of the Rice Transposon Enhances Amplification of the MITE
- PINK1-Mediated Phosphorylation of Parkin Boosts Parkin Activity in
- OsHUS1 Facilitates Accurate Meiotic Recombination in Rice
- Genetic Background Drives Transcriptional Variation in Human Induced Pluripotent Stem Cells
- Pervasive Divergence of Transcriptional Gene Regulation in Caenorhabditis Nematodes
- N-WASP Is Required for Structural Integrity of the Blood-Testis Barrier
- The Transcription Factor TFII-I Promotes DNA Translesion Synthesis and Genomic Stability
- An Operon of Three Transcriptional Regulators Controls Horizontal Gene Transfer of the Integrative and Conjugative Element ICE in B13
- Digital Genotyping of Macrosatellites and Multicopy Genes Reveals Novel Biological Functions Associated with Copy Number Variation of Large Tandem Repeats
- ATRA-Induced Cellular Differentiation and CD38 Expression Inhibits Acquisition of BCR-ABL Mutations for CML Acquired Resistance
- The EJC Binding and Dissociating Activity of PYM Is Regulated in
- JNK Controls the Onset of Mitosis in Planarian Stem Cells and Triggers Apoptotic Cell Death Required for Regeneration and Remodeling
- Mouse Y-Linked and Are Expressed during the Male-Specific Interphase between Meiosis I and Meiosis II and Promote the 2 Meiotic Division
- Rasa3 Controls Megakaryocyte Rap1 Activation, Integrin Signaling and Differentiation into Proplatelet
- Transcriptional Control of Steroid Biosynthesis Genes in the Prothoracic Gland by Ventral Veins Lacking and Knirps
- Souffle/Spastizin Controls Secretory Vesicle Maturation during Zebrafish Oogenesis
- The POU Factor Ventral Veins Lacking/Drifter Directs the Timing of Metamorphosis through Ecdysteroid and Juvenile Hormone Signaling
- The First Endogenous Herpesvirus, Identified in the Tarsier Genome, and Novel Sequences from Primate Rhadinoviruses and Lymphocryptoviruses
- Sequence of a Complete Chicken BG Haplotype Shows Dynamic Expansion and Contraction of Two Gene Lineages with Particular Expression Patterns
- Background Selection as Baseline for Nucleotide Variation across the Genome
- CPF-Associated Phosphatase Activity Opposes Condensin-Mediated Chromosome Condensation
- The Effects of Codon Context on Translation Speed
- Glycogen Synthase Kinase (GSK) 3β Phosphorylates and Protects Nuclear Myosin 1c from Proteasome-Mediated Degradation to Activate rDNA Transcription in Early G1 Cells
- Regulation of Gene Expression in Autoimmune Disease Loci and the Genetic Basis of Proliferation in CD4 Effector Memory T Cells
- Muscle Structure Influences Utrophin Expression in Mice
- BLMP-1/Blimp-1 Regulates the Spatiotemporal Cell Migration Pattern in
- Identification of Late Larval Stage Developmental Checkpoints in Regulated by Insulin/IGF and Steroid Hormone Signaling Pathways
- Transport of Magnesium by a Bacterial Nramp-Related Gene
- Sgo1 Regulates Both Condensin and Ipl1/Aurora B to Promote Chromosome Biorientation
- The HY5-PIF Regulatory Module Coordinates Light and Temperature Control of Photosynthetic Gene Transcription
- The Rim15-Endosulfine-PP2A Signalling Module Regulates Entry into Gametogenesis and Quiescence Distinct Mechanisms in Budding Yeast
- Regulation of Hfq by the RNA CrcZ in Carbon Catabolite Repression
- Loss of a Neural AMP-Activated Kinase Mimics the Effects of Elevated Serotonin on Fat, Movement, and Hormonal Secretions
- Positive Feedback of Expression Ensures Irreversible Meiotic Commitment in Budding Yeast
- Hecate/Grip2a Acts to Reorganize the Cytoskeleton in the Symmetry-Breaking Event of Embryonic Axis Induction
- Regulatory Mechanisms That Prevent Re-initiation of DNA Replication Can Be Locally Modulated at Origins by Nearby Sequence Elements
- Speciation and Introgression between and
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Early Back-to-Africa Migration into the Horn of Africa
- PINK1-Mediated Phosphorylation of Parkin Boosts Parkin Activity in
- OsHUS1 Facilitates Accurate Meiotic Recombination in Rice
- An Operon of Three Transcriptional Regulators Controls Horizontal Gene Transfer of the Integrative and Conjugative Element ICE in B13
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy