#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Reviving the Dead: History and Reactivation of an Extinct L1


Most of a typical mammalian genome is occupied by transposable elements, which have played an important role in shaping these genomes, and L1s account for approximately half of this transposable element load. Mammals have evolved several mechanisms to control L1 retrotransposition, and yet L1s remain active in almost all mammalian lineages. However, L1s were found to have gone extinct in the megabat family ∼24 million years ago. We were able to trace megabat L1s to the ancestral L1 families shared by all mammals as well as identify bat-specific L1 families. Unlike most well-characterized mammals which have a single active L1 lineage, multiple L1 lineages have persisted in megabats throughout their evolutionary history. When the L1 extinction occurred in megabats, two active lineages lost their ability to retrotranspose almost simultaneously after a burst of activity. We synthesized the L1 from the most active family at the time of extinction and found a long intergenic spacer between its two protein coding genes. Tissue culture assays of the reconstructed megabat L1 revealed that both genes supported retrotransposition, but that the spacer is inhibitory. Despite the inhibition, this family accounted for 18% of the L1s detected in the megabat genome.


Vyšlo v časopise: Reviving the Dead: History and Reactivation of an Extinct L1. PLoS Genet 10(6): e32767. doi:10.1371/journal.pgen.1004395
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004395

Souhrn

Most of a typical mammalian genome is occupied by transposable elements, which have played an important role in shaping these genomes, and L1s account for approximately half of this transposable element load. Mammals have evolved several mechanisms to control L1 retrotransposition, and yet L1s remain active in almost all mammalian lineages. However, L1s were found to have gone extinct in the megabat family ∼24 million years ago. We were able to trace megabat L1s to the ancestral L1 families shared by all mammals as well as identify bat-specific L1 families. Unlike most well-characterized mammals which have a single active L1 lineage, multiple L1 lineages have persisted in megabats throughout their evolutionary history. When the L1 extinction occurred in megabats, two active lineages lost their ability to retrotranspose almost simultaneously after a burst of activity. We synthesized the L1 from the most active family at the time of extinction and found a long intergenic spacer between its two protein coding genes. Tissue culture assays of the reconstructed megabat L1 revealed that both genes supported retrotransposition, but that the spacer is inhibitory. Despite the inhibition, this family accounted for 18% of the L1s detected in the megabat genome.


Zdroje

1. FuranoAV (2000) The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons. Prog Nucleic Acid Res Mol Biol 64: 255–294.

2. KulpaDA, MoranJV (2006) Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat Struct Mol Biol 13: 655–660.

3. WeiW, GilbertN, OoiSL, LawlerJF, OstertagEM, et al. (2001) Human L1 retrotransposition: cis preference versus trans complementation. Mol Cell Biol 21: 1429–1439.

4. AlischRS, Garcia-PerezJL, MuotriAR, GageFH, MoranJV (2006) Unconventional translation of mammalian LINE-1 retrotransposons. Genes Dev 20: 210–224.

5. LiPW, LiJ, TimmermanSL, KrushelLA, MartinSL (2006) The dicistronic RNA from the mouse LINE-1 retrotransposon contains an internal ribosome entry site upstream of each ORF: implications for retrotransposition. Nucleic Acids Res 34: 853–864.

6. BelancioVP, HedgesDJ, DeiningerP (2008) Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res 18: 343–358.

7. ChenJM, FerecC, CooperDN (2006) LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease: mutation detection bias and multiple mechanisms of target gene disruption. J Biomed Biotechnol 2006: 56182.

8. MoranJV, DeBerardinisRJ, KazazianHHJr (1999) Exon shuffling by L1 retrotransposition. Science 283: 1530–1534.

9. GilbertN, Lutz-PriggeS, MoranJV (2002) Genomic deletions created upon LINE-1 retrotransposition. Cell 110: 315–325.

10. SymerDE, ConnellyC, SzakST, CaputoEM, CostGJ, et al. (2002) Human L1 retrotransposition is associated with genetic instability in vivo. Cell 110: 327–338.

11. Garcia-PerezJL, MarchettoMC, MuotriAR, CoufalNG, GageFH, et al. (2007) LINE-1 retrotransposition in human embryonic stem cells. Hum Mol Genet 16: 1569–1577.

12. GasiorSL, WakemanTP, XuB, DeiningerPL (2006) The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 357: 1383–1393.

13. FengQ, MoranJV, KazazianHHJr, BoekeJD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87: 905–916.

14. PetrovDA, AminetzachYT, DavisJC, BensassonD, HirshAE (2003) Size matters: non-LTR retrotransposable elements and ectopic recombination in Drosophila. Mol Biol Evol 20: 880–892.

15. DeiningerPL, BatzerMA (1999) Alu repeats and human disease. Mol Genet Metab 67: 183–193.

16. HanK, LeeJ, MeyerTJ, RemediosP, GoodwinL, et al. (2008) L1 recombination-associated deletions generate human genomic variation. Proc Natl Acad Sci U S A 105: 19366–19371.

17. BurwinkelB, KilimannMW (1998) Unequal homologous recombination between LINE-1 elements as a mutational mechanism in human genetic disease. J Mol Biol 277: 513–517.

18. WichmanHA, Van den BusscheRA, HamiltonMJ, BakerRJ (1992) Transposable elements and the evolution of genome organization in mammals. Genetica 86: 287–293.

19. CarboneL, HarrisRA, MootnickAR, MilosavljevicA, MartinDI, et al. (2012) Centromere remodeling in Hoolock leuconedys (Hylobatidae) by a new transposable element unique to the gibbons. Genome Biol Evol 4: 648–658.

20. RebolloR, FarivarS, MagerDL (2012) C-GATE - catalogue of genes affected by transposable elements. Mob DNA 3: 9.

21. RebolloR, RomanishMT, MagerDL (2012) Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet 46: 21–42.

22. HanJS, SzakST, BoekeJD (2004) Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429: 268–274.

23. CantrellMA, CarstensBC, WichmanHA (2009) X chromosome inactivation and Xist evolution in a rodent lacking LINE-1 activity. PLoS ONE 4: e6252.

24. ChowJC, CiaudoC, FazzariMJ, MiseN, ServantN, et al. (2010) LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141: 956–969.

25. LyonMF (2003) The Lyon and the LINE hypothesis. Semin Cell Dev Biol 14: 313–318.

26. MuotriAR, ChuVT, MarchettoMC, DengW, MoranJV, et al. (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435: 903–910.

27. CoufalNG, Garcia-PerezJL, PengGE, YeoGW, MuY, et al. (2009) L1 retrotransposition in human neural progenitor cells. Nature 460: 1127–1131.

28. MuotriAR, GageFH (2006) Generation of neuronal variability and complexity. Nature 441: 1087–1093.

29. SasakiT, NishiharaH, HirakawaM, FujimuraK, TanakaM, et al. (2008) Possible involvement of SINEs in mammalian-specific brain formation. Proc Natl Acad Sci U S A 105: 4220–4225.

30. SmitAF (1996) The origin of interspersed repeats in the human genome. Curr Opin Genet Dev 6: 743–748.

31. LuoZX, YuanCX, MengQJ, JiQ (2011) A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476: 442–445.

32. BoissinotS, RoosC, FuranoAV (2004) Different rates of LINE-1 (L1) retrotransposon amplification and evolution in New World monkeys. J Mol Evol 58: 122–130.

33. CasavantNC, HardiesSC (1994) The dynamics of murine LINE-1 subfamily amplification. J Mol Biol 241: 390–397.

34. SookdeoA, HeppCM, McClureMA, BoissinotS (2013) Revisiting the evolution of mouse LINE-1 in the genomic era. Mob DNA 4: 3.

35. KhanH, SmitA, BoissinotS (2006) Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Res 16: 78–87.

36. PascaleE, LiuC, ValleE, UsdinK, FuranoAV (1993) The evolution of long interspersed repeated DNA (L1, LINE 1) as revealed by the analysis of an ancient rodent L1 DNA family. J Mol Evol 36: 9–20.

37. AdeyNB, SchichmanSA, GrahamDK, PetersonSN, EdgellMH, et al. (1994) Rodent L1 evolution has been driven by a single dominant lineage that has repeatedly acquired new transcriptional regulatory sequences. Mol Biol Evol 11: 778–789.

38. CloughJE, FosterJA, BarnettM, WichmanHA (1996) Computer simulation of transposable element evolution: random template and strict master models. J Mol Evol 42: 52–58.

39. CasavantNC, LeeRN, ShermanAN, WichmanHA (1998) Molecular evolution of two lineages of L1 (LINE-1) retrotransposons in the California mouse, Peromyscus californicus. Genetics 150: 345–357.

40. LanderES, LintonLM, BirrenB, NusbaumC, ZodyMC, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.

41. BrouhaB, SchustakJ, BadgeRM, Lutz-PriggeS, FarleyAH, et al. (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A 100: 5280–5285.

42. WaterstonRH, Lindblad-TohK, BirneyE, RogersJ, AbrilJF, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562.

43. YoderJA, WalshCP, BestorTH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13: 335–340.

44. Bourc'hisD, BestorTH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431: 96–99.

45. AravinAA, SachidanandamR, GirardA, Fejes-TothK, HannonGJ (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316: 744–747.

46. WissingS, MontanoM, Garcia-PerezJL, MoranJV, GreeneWC (2011) Endogenous APOBEC3B restricts LINE-1 retrotransposition in transformed cells and human embryonic stem cells. J Biol Chem 286: 36427–36437.

47. GasiorSL, Roy-EngelAM, DeiningerPL (2008) ERCC1/XPF limits L1 retrotransposition. DNA Repair (Amst) 7: 983–989.

48. SuzukiJ, YamaguchiK, KajikawaM, IchiyanagiK, AdachiN, et al. (2009) Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition. PLoS Genet 5: e1000461.

49. WatersPD, DobignyG, PardiniAT, RobinsonTJ (2004) LINE-1 distribution in Afrotheria and Xenarthra: implications for understanding the evolution of LINE-1 in eutherian genomes. Chromosoma 113: 137–144.

50. CantrellMA, ScottL, BrownCJ, MartinezAR, WichmanHA (2008) Loss of LINE-1 activity in the megabats. Genetics 178: 393–404.

51. GrahnRA, RinehartTA, CantrellMA, WichmanHA (2005) Extinction of LINE-1 activity coincident with a major mammalian radiation in rodents. Cytogenet Genome Res 110: 407–415.

52. CasavantNC, ScottL, CantrellMA, WigginsLE, BakerRJ, et al. (2000) The end of the LINE?: lack of recent L1 activity in a group of South American rodents. Genetics 154: 1809–1817.

53. RinehartTA, GrahnRA, WichmanHA (2005) SINE extinction preceded LINE extinction in sigmodontine rodents: implications for retrotranspositional dynamics and mechanisms. Cytogenet Genome Res 110: 416–425.

54. PlattRN2nd, RayDA (2012) A non-LTR retroelement extinction in Spermophilus tridecemlineatus. Gene 500: 47–53.

55. Smit A, Hubley R (1996–2010) RepeatMasker Open-3.0.

56. JurkaJ, KapitonovVV, PavlicekA, KlonowskiP, KohanyO, et al. (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110: 462–467.

57. JurkaJ (2000) Repbase update: a database and an electronic journal of repetitive elements. Trends Genet 16: 418–420.

58. SmitAF, TothG, RiggsAD, JurkaJ (1995) Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J Mol Biol 246: 401–417.

59. WadeCM, GiulottoE, SigurdssonS, ZoliM, GnerreS, et al. (2009) Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326: 865–867.

60. ScottAF, SchmeckpeperBJ, AbdelrazikM, ComeyCT, O'HaraB, et al. (1987) Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics 1: 113–125.

61. MoranJV, HolmesSE, NaasTP, DeBerardinisRJ, BoekeJD, et al. (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87: 917–927.

62. HanJS, BoekeJD (2004) A highly active synthetic mammalian retrotransposon. Nature 429: 314–318.

63. WagstaffBJ, BarnerssoiM, Roy-EngelAM (2011) Evolutionary conservation of the functional modularity of primate and murine LINE-1 elements. PLoS ONE 6: e19672.

64. NaasTP, DeBerardinisRJ, MoranJV, OstertagEM, KingsmoreSF, et al. (1998) An actively retrotransposing, novel subfamily of mouse L1 elements. EMBO J 17: 590–597.

65. SchwahnU, LenznerS, DongJ, FeilS, HinzmannB, et al. (1998) Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat Genet 19: 327–332.

66. KimberlandML, DivokyV, PrchalJ, SchwahnU, BergerW, et al. (1999) Full-length human L1 insertions retain the capacity for high frequency retrotransposition in cultured cells. Hum Mol Genet 8: 1557–1560.

67. AnW, DaiL, NiewiadomskaAM, YetilA, O'DonnellKA, et al. (2011) Characterization of a synthetic human LINE-1 retrotransposon ORFeus-Hs. Mob DNA 2: 2.

68. OstertagEM, PrakET, DeBerardinisRJ, MoranJV, KazazianHHJr (2000) Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Res 28: 1418–1423.

69. CordauxR, BatzerMA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10: 691–703.

70. NeiM, MaruyamaT, ChakrabortyR (1975) The bottleneck effect and genetic variability in populations. Evolution 1–10.

71. Hutchison CA, III, Hardies SC, Loeb DD, Shehee WR, Edgell MH (1989) LINEs and related retroposons: long interspersed repeated sequences in the eucaryotic genome. In: Berg DE, Howe MM, editors. Mobile DNA. Washington DC: American Society for Microbiology. pp. 593–617.

72. MorrishTA, GilbertN, MyersJS, VincentBJ, StamatoTD, et al. (2002) DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31: 159–165.

73. WagstaffBJ, KroutterEN, DerbesRS, BelancioVP, Roy-EngelAM (2013) Molecular reconstruction of extinct LINE-1 elements and their interaction with nonautonomous elements. Mol Biol Evol 30: 88–99.

74. BelancioVP, HedgesDJ, DeiningerP (2006) LINE-1 RNA splicing and influences on mammalian gene expression. Nucleic Acids Res 34: 1512–1521.

75. MartinSL, BranciforteD (1993) Synchronous expression of LINE-1 RNA and protein in mouse embryonal carcinoma cells. Mol Cell Biol 13: 5383–5392.

76. StrevaVA, FaberZJ, DeiningerPL (2013) LINE-1 and Alu retrotransposition exhibit clonal variation. Mob DNA 4: 16.

77. IvicsZ, HackettPB, PlasterkRH, IzsvakZ (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91: 501–510.

78. AmmarI, IzsvakZ, IvicsZ (2012) The Sleeping Beauty transposon toolbox. Methods Mol Biol 859: 229–240.

79. HorvathCM, WilliamsMA, LambRA (1990) Eukaryotic coupled translation of tandem cistrons: identification of the influenza B virus BM2 polypeptide. EMBO J 9: 2639–2647.

80. SmithJD, GregoryTR (2009) The genome sizes of megabats (Chiroptera: Pteropodidae) are remarkably constrained. Biol Lett 5: 347–351.

81. GregoryTR (2002) A bird's-eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class Aves. Evolution 56: 121–130.

82. TierschTR, WachtelSS (1991) On the evolution of genome size of birds. J Hered 82: 363–368.

83. SzarskiH (1970) Changes in the amount of DNA in cell nuclei during vertebrate evolution. Nature 226: 651–652.

84. AndrewsCB, MackenzieSA, GregoryTR (2009) Genome size and wing parameters in passerine birds. Proc Biol Sci 276: 55–61.

85. KidwellMG (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115: 49–63.

86. FanningTG (1983) Size and structure of the highly repetitive BAM HI element in mice. Nucleic Acids Res 11: 5073–5091.

87. JurkaJ, KlonowskiP, DagmanV, PeltonP (1996) CENSOR–a program for identification and elimination of repetitive elements from DNA sequences. Comput Chem 20: 119–121.

88. GuindonS, DufayardJF, LefortV, AnisimovaM, HordijkW, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307–321.

89. AltschulSF, GishW, MillerW, MyersEW, LipmanDJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.

90. R Core Team (2013) R: A Language and Environment for Statistical Computing. Vienna, Austria.

91. CantrellMA, GrahnRA, ScottL, WichmanHA (2000) Isolation of markers from recently transposed LINE-1 retrotransposons. Biotechniques 29: 1310–1316.

92. AnW, HanJS, WheelanSJ, DavisES, CoombesCE, et al. (2006) Active retrotransposition by a synthetic L1 element in mice. Proc Natl Acad Sci U S A 103: 18662–18667.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#