#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Effects of Codon Context on Translation Speed


The central dogma of molecular biology states that DNA is transcribed into RNA, which is translated into protein. The process of translation from messenger RNA (mRNA) into protein by the ribosome is a complicated process involving transfer RNA intermediates with attached amino acids that must recognize 3 base codons in the mRNA sequence to be translated with the correct amino acid. With 4 bases to code for 20 proteins the genetic code is redundant with 61 coding codons and three stop codons. A given amino acid might be coded by one, two, three, four or six different codons. We developed a system that measures the speed of the ribosome in vivo during translation. Using this system, we show that the ability of a given codon to be translated is dependent on its neighboring codons, the codon context effect.


Vyšlo v časopise: The Effects of Codon Context on Translation Speed. PLoS Genet 10(6): e32767. doi:10.1371/journal.pgen.1004392
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004392

Souhrn

The central dogma of molecular biology states that DNA is transcribed into RNA, which is translated into protein. The process of translation from messenger RNA (mRNA) into protein by the ribosome is a complicated process involving transfer RNA intermediates with attached amino acids that must recognize 3 base codons in the mRNA sequence to be translated with the correct amino acid. With 4 bases to code for 20 proteins the genetic code is redundant with 61 coding codons and three stop codons. A given amino acid might be coded by one, two, three, four or six different codons. We developed a system that measures the speed of the ribosome in vivo during translation. Using this system, we show that the ability of a given codon to be translated is dependent on its neighboring codons, the codon context effect.


Zdroje

1. YarusM, FolleyLS (1985) Sense codons are found in specific contexts. J Mol Biol 182: 529–540.

2. ErmolaevaMD (2001) Synonymous codon usage in bacteria. Current issues in Molecular Biology 3: 91–97.

3. FedorovA, SaxonovS, GilbertW (2002) Regularities of context-dependent codon bias in eukaryotic genes. Nucleic Acids Research 30: 1192–1197.

4. MouraG, PinheiroM, SilvaR, MirandaI, AfreixoV, et al. (2005) Comparative context analysis of codon pairs on an ORFeome scale. Genome biology 6: R28.

5. TatsA, TensonT, RemmM (2008) Preferred and avoided codon pairs in three domains of life. BMC Genomics 9: 463.

6. MouraGR, PinheiroM, FreitasA, OliveiraJL, FrommletJC, et al. (2011) Species-specific codon context rules unveil non-neutrality effects of synonymous mutations. PloS one 6: e26817.

7. BossiL, RothJR (1980) The influence of codon context on genetic code translation. Nature 286: 123–127.

8. AyerD, YarusM (1986) The context effect does not require a fourth base pair. Science 231: 393–395.

9. MillerJH, AlbertiniAM (1983) Effects of surrounding sequence on the suppression of nonsense codons. J Mol Biol 164: 59–71.

10. MurgolaEJ, PagelFT (1983) Suppressors of lysine codons may be misacylated lysine tRNAs. J Bacteriol 156: 917–919.

11. MurgolaEJ, PagelFT, HijaziKA (1984) Codon context effects in missense suppression. J Mol Biol 175: 19–27.

12. ShpaerEG (1986) Constraints on codon context in Escherichia coli genes. Their possible role in modulating the efficiency of translation. J Mol Biol 188: 555–564.

13. KramerEB, FarabaughPJ (2007) The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA 13: 87–96.

14. KramerEB, VallabhaneniH, MayerLM, FarabaughPJ (2010) A comprehensive analysis of translational missense errors in the yeast Saccharomyces cerevisiae. RNA 16: 1797–1808.

15. SharpPM, LiWH (1987) The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Molecular Biology and Evolution 4: 222–230.

16. SharpPM, LiWH (1987) The codon Adaptation Index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Research 15: 1281–1295.

17. BergOG, SilvaPJ (1997) Codon bias in Escherichia coli: the influence of codon context on mutation and selection. Nucleic Acids Research 25: 1397–1404.

18. McVeanGA, HurstGD (2000) Evolutionary lability of context-dependent codon bias in bacteria. J Mol Evol 50: 264–275.

19. SorensenMA, KurlandCG, PedersenS (1989) Codon usage determines translation rate in Escherichia coli. J Mol Biol 207: 365–377.

20. KolmseeT, HenggeR (2011) Rare codons play a positive role in the expression of the stationary phase sigma factor RpoS (σ(S)) in Escherichia coli. RNA Biol 8: 913–921.

21. Subramaniam AR, DeLoughery A, Bradshaw N, Chen Y, O'Shea E, et al. (2013) A serine sensor for multicellularity in a bacterium. eLIFE doi:10.7554/eLIFE.01501.

22. KudlaG, MurrayAW, TollerveyD, PlotkinJB (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science 324: 255–258.

23. DeanaA, EhrlichR, ReissC (1996) Synonymous codon selection controls in vivo turnover and amount of mRNA in Escherichia coli bla and ompA genes. J Bacteriol 178: 2718–2720.

24. TullerT, CarmiA, VestsigianK, NavonS, DorfanY, et al. (2010) An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141: 344–354.

25. ZhangG, HubalewskaM, IgnatovaZ (2009) Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Struct Mol Biol 16: 274–280.

26. ShineJ, DalgarnoL (1974) The 3'-terminal sequence of Escherichia coli 16s ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71: 1342–1346.

27. LiG-W, OhE, WeissmanJS (2012) The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484: 538–541.

28. JohnstonHM, BarnesWM, ChumleyFG, BossiL, RothJR (1980) Model for regulation of the histidine operon of Salmonella. Proc Natl Acad Sci USA 77: 508–512.

29. CurranJF, YarusM (1989) Rates of aminoacyl-tRNA selection at 29 sense codons in vivo. J Mol Biol 209: 65–77.

30. HughesKT, RothJR (1988) Transitory cis complementation: a method for providing transposition functions to defective transposons. Genetics 119: 9–12.

31. JohnstonHM, RothJR (1981) Genetic analysis of the histidine operon control region of Salmonella typhimurium. J Mol Biol 145: 713–734.

32. JohnstonHM, RothJR (1981) DNA sequence changes of mutations altering attenuation control of the histidine operon of Salmonella typhimurium. J Mol Biol 145: 735–756.

33. ThomasLK, DixDB, ThompsonRC (1988) Codon choice and gene expression: synonymous codons differ in their ability to direct aminoacylated-transfer RNA binding to ribosomes in vitro. Proc Natl Acad Sci USA 85: 4242–4246.

34. GrosjeanHJ, de HenauS, CrothersDM (1978) On the Physical Basis for Ambiguity in Genetic Coding Interactions. Proc Natl Acad Sci U S A 75: 610–614.

35. ChevanceFF, KarlinseyJE, WozniakCE, HughesKT (2006) A little gene with big effects: a serT mutant is defective in flgM gene translation. J Bacteriol 188: 297–304.

36. PavlovMY, WattsRE, TanZ, CornishVW, EhrenbergM, et al. (2009) Slow peptide bond formation by proline and other N-alkylamino acids in translation. Proc Natl Acad Sci USA 106: 50–54.

37. TannerDR, CarielloDA, WoolstenhulmeCJ, BroadbentMA, BuskirkAR (2009) Genetic identification of nascent peptides that induce ribosome stalling. J Biol Chem 284: 34809–34818.

38. DoerfelLK, WohlgemuthI, KotheC, PeskeF, UrlaubH, et al. (2013) EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science 339: 85–88.

39. IkemuraT (1985) Codon Usage and tRNA Content in Unicellular and Multicellular Organisms. Mol Biol Evol 2: 13–34.

40. CrickF (1971) Central dogma of molecular biology. Nature 227: 561–563.

41. CrickFH, BarnettL, BrennerS, Watts-TobinRJ (1961) General nature of the genetic code for proteins. Nature 192: 1227–1232.

42. Ehrenberg M (2009) Structure and function of the ribosome. The Royal Swedish Academy of Sciences. 1–22. Available: http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2009/advanced-chemistryprize2009.pdf. Accessed: 9 May 2014.

43. GoodmanDB, ChurchGM, KosuriS (2013) Causes and effects of N-terminal codon bias in bacterial genes. Science 342: 475–478.

44. HershbergR, PetrovDA (2008) Selection on codon bias. Annu Rev Genet 42: 287–299.

45. SharpPM, BailesE, GrocockRJ, PedenJF, SockettRE (2005) Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res 33: 1141–1153.

46. IkemuraT (1981) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol 146: 1–21.

47. PostLE, NomuraM (1980) DNA sequences from the str operon of Escherichia coli. J Biol Chem 255: 4660–4666.

48. RobinsonM, LilleyR, LittleS, EmtageJS, YarrantonG, et al. (1984) Codon usage can affect efficiency of translation of genes in Escherichia coli. Nucleic Acids Res 12: 6663–6671.

49. ColemanJR, PapamichailD, SkienaS, FutcherB, WimmerE, et al. (2008) Virus attenuation by genome-scale changes in codon pair bias. Science 320: 1784–1787.

50. WilkeCO, DrummondDA (2010) Signatures of protein biophysics in coding sequence evolution. Curr Opin Struct Biol 20: 385–389.

51. ShabalinaSA, OgurtsovAY, SpiridonovNA (2006) A periodic pattern of mRNA secondary structure created by the genetic code. Nucleic Acids Res 34: 2428–2437.

52. ZhangF, SahaS, ShabalinaSA, KashinaA (2010) Differential arginylation of actin isoforms is regulated by coding sequence-dependent degradation. Science 329: 1534–1537.

53. LiJ, EsbergB, CurranJF, BjorkGR (1997) Three modified nucleosides present in the anticodon stem and loop influence the in vivo aa-tRNA selection in a tRNA-dependent manner. J Mol Biol 271: 209–221.

54. KramerG, BoehringerD, BanN, BukauB (2009) The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nature Struc Mol Biol 16: 589–597.

55. ChangGW, RothJR, AmesBN (1971) Histidine regulation in Salmonella typhimurium. 8. Mutations of the hisT gene. J Bacteriol 108: 410–414.

56. SandersonKE, RothJR (1983) Linkage map of Salmonella typhimurium, Edition VI. Microbiol Rev 47: 410–453.

57. KarlinseyJE (2007) lambda-Red genetic engineering in Salmonella enterica serovar Typhimurium. Methods Enzymol 421: 199–209.

58. DatsenkoKA, WannerBL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640–6645.

59. Maloy SR (1990) Experimental Techniques in Bacterial Genetics. Boston: Jones and Bartlett.

60. PfafflMW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45.

61. Bjork GR, Hagervall TG (2008) Transfer RNA modifications. Escherichia coli and Salmonella Cellular and Molecular Biology. Washington, D.C.: ASM Press.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#